218 research outputs found

    Anode-Coupled Readout for Light Collection in Liquid Argon TPCs

    Get PDF
    This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. This greatly benefits light collection: it eliminates the need for an independent readout, substantially reducing cost; It reduces the number of cables in the vapor region of the TPC that can produce impurities; And it cuts down on the number of feed-throughs in the cryostat wall that can cause heat-leaks and potential points of failure. We present experimental results that demonstrate the sensitivity of a LArTPC wire plane to photon detector signals. We also simulate the effect of a 1 μ\mus shaping time and a 2 MHz sampling rate on these signals in the presence of noise, and find that a single photoelectron timing resolution of \sim30 ns can be achieved.Comment: 16 pages, 15 figure

    Demonstration of a Lightguide Detector for Liquid Argon TPCs

    Get PDF
    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector

    Environmental Effects on TPB Wavelength-Shifting Coatings

    Get PDF
    The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments

    On two weak CC Delta production models

    Full text link
    We perform a detail analysis of two models of neutrino CC Delta production on free nucleons. First model is a standard one based on nucleon-Delta transition current with several form-factors. Second model is a starting point for a construction of Marteau model with sophisticated analytical computations of nuclear effects. We conclude that both models lead to similar results.Comment: 9 pages, includes 9 figures, accepted for publication in J. Phys.

    New Measurements of Nucleon Structure Functions from the CCFR/NuTeV Collaboration

    Get PDF
    We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nubar from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The F_2 (PMI) values measured in neutrino and muon scattering are in good agreement with the predictions of Next to Leading Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two sets of data.Comment: 5 pages. Presented by Arie Bodek at the CIPNAP2000 Conference, Quebec City, May 200

    A Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering

    Full text link
    The NuTeV collaboration has extracted sin^2theta_W from the ratios of neutral current to charged current neutrino and anti-neutrino cross-sections. Our value, sin^2theta_W(on-shell)=0.2277+/-0.0013(stat)+/-0.0009(syst), is three standard deviations above the standard model prediction. We also present a model independent analysis of the same data.Comment: ReVTeX, 5 pp, 1fig; v2. revised SM prediction; v3. more sig. digits in Eqns 6-7, fix error in Eqn
    corecore