368 research outputs found

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Analysis of neural crest-derived clones reveals novel aspects of facial development

    Get PDF
    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth

    Safe use of contrast media in myasthenia gravis: systematic review and updated European Society of Urogenital Radiology Contrast Media Safety Committee guidelines

    Get PDF
    Objectives: It is uncertain whether modern iodine-based or gadolinium-based contrast media (CM) administration can lead to increased symptoms in patients with myasthenia gravis. Methods: A systematic search in Medline was conducted for studies describing the symptomatology of myasthenia gravis patients before and after receiving intravenous (IV) CM and having a matched control group of myasthenia gravis patients who did not receive IV CM. Results: Three retrospective studies were selected with a total of 374 myasthenia gravis patients who received iodine-based CM and a total of 313 myasthenia gravis patients who underwent unenhanced CT and served as controls. Pooling of the data from the three retrospective studies showed that in 23 of 374 patients, increased symptoms after iodine-based CM administration were described (6.1%). Increased symptomatology also occurred in 11 of 313 patients after unenhanced CT (3.5%). When looking more deeply into the data of the three studies, conflicting results were found, as two articles did not find any relationship between CM and myasthenia gravis symptoms. The remaining study only found a significant increase in symptomatology within 1 day after CT scanning: seven patients (6.3%) in the contrast-enhanced CT group and one patient (0.6%) in the unenhanced CT group (p = 0.01). Conclusions: There is limited evidence on the relationship between CM and myasthenia gravis symptoms. In the vast majority of myasthenia gravis patients, CM are safe. Probably, in less than 5% of the patients, iodine-based CM administration may lead to increased severity of the symptoms within the first 24 h after administration. Clinical relevance statement: Be aware that intravenous administration of iodine-based contrast media can lead to an increase of symptoms in patients with myasthenia gravis within the first 24 h. This can probably happen in less than 5% of the patients. Key points: • It is unclear whether modern contrast media can lead to increased symptoms in myasthenia gravis patients after intravenous administration. • There seems to be a small risk of increased myasthenia gravis symptoms within 24 h after intravenous administration of iodine-based contrast media, probably in less than 5% of the administrations. • Gadolinium-based contrast media are safe for patients with myasthenia gravis

    Waiting times between examinations with intravascularly administered contrast media: a review of contrast media pharmacokinetics and updated ESUR Contrast Media Safety Committee guidelines

    Get PDF
    The pharmacokinetics of contrast media (CM) will determine how long safe waiting intervals between successive CT or MRI examinations should be. The Contrast Media Safety Committee has reviewed the data on pharmacokinetics of contrast media to suggest safe waiting intervals between successive contrast-enhanced imaging studies in relation to the renal function of the patient

    Calcium-Activated Potassium Channels BK and IK1 Are Functionally Expressed in Human Gliomas but Do Not Regulate Cell Proliferation

    Get PDF
    Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance (BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1 inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target actions

    Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.</p> <p>Methods</p> <p>Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.</p> <p>Results</p> <p>Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.</p> <p>Conclusion</p> <p>The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.</p

    Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

    Get PDF
    To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver. We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBEfull) and sub-frame image subsets (r-VIBEsub; temporal resolution, 2.5-3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries. Mean abdominal aortic CERs for c-VIBE, r-VIBEfull, and r-VIBEsub were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBEfull and r-VIBEsub in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBEsub was not significantly different from that for r-VIBEfull. Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBEsub features high temporal resolution without image degradation in arterial phase DCE-MRI. aEuro cent Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images. aEuro cent Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC. aEuro cent Using r-VIBE-KWIC, optimal arterial phase images were obtained in over 90 %. aEuro cent Using r-VIBE-KWIC, visualisation of the hepatic arteries was improved. aEuro cent A two-reader study revealed r-VIBE-KWIC's advantages over Cartesian VIBE.ArticleEUROPEAN RADIOLOGY. 24(6):1290-1299 (2014)journal articl
    corecore