2,639 research outputs found
Design and evaluation of peptide nucleic acid probes for specific identification of Candida albicans.
Candida albicans is an important cause of systemic fungal infections, and rapid diagnostics for identifying and differentiating C. albicans from other Candida species are critical for the timely application of appropriate antimicrobial therapy, improved patient outcomes, and pharmaceutical cost savings. In this work, two 28S rRNA-directed peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) probes, P-Ca726 (targeting a novel region of the ribosome) and P-CalB2208 (targeting a previously reported region), were evaluated. Hybridization conditions were optimized by using both fluorescence microscopy (FM) and flow cytometry (FCM), and probes were screened for specificity and discriminative ability against a panel of C. albicans and various nontarget Candida spp. The performance of these PNA probes was compared quantitatively against that of DNA probes or DNA probe/helper combinations directed against the same target regions. Ratiometric analyses of FCM results indicated that both the hybridization quality and yield of the PNA probes were higher than those of the DNA probes. In FCM-based comparisons of the PNA probes, P-Ca726 was found to be highly specific, showing 2.5- to 5.5-fold-higher discriminatory power for C. albicans than P-CalB2208. The use of formamide further improved the performance of the new probe. Our results reinforce the significant practical and diagnostic advantages of PNA probes over their DNA counterparts for FISH and indicate that P-Ca726 may be used advantageously for the rapid and specific identification of C. albicans in clinical and related applications, especially when combined with FCM
Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures
We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domainspolar and nonpolarthree stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment
High resolution millimeter wave SAR interferometry
High resolution millimeter wave synthetic aperture radar (SAR) interferometry is presented using the MEMPHIS multi-baseline InSAR system. A complete processing chain is used to generate digital elevation models starting from the radar raw data. A deeper focus is laid on the phase unwrapping step, which is achieved using the multi-baseline properties of the system. In November 2006, an experiment was realized including two test sites in Switzerland; the actual results are presented and discussed
Processing of MEMPHIS millimeter wave multi-baseline InSAR data
This paper presents a processing method for multi-baseline interferometric data acquired with the MEMPHIS airborne sensor. The processing method ingests the SAR raw data from each receiver and extends up to the generation of digital elevation models (DEMs). Critical steps include the correction of the azimuth phase undulations, the multi- baseline processing and the phase-to-DEM conversion. Methods for resolving the various hurdles were adapted to the MEMPHIS sensor and are presented here. The results obtained for a data take over a test site near Zurich, Switzerland are shown; these results are in a good agreement with comparable LIDAR products
Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2
The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements
Ozonation-Based Decolorization of Food Dyes for Recovery of Fruit Leather Wastes
Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal.
To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone
Mitochondrial portrait of the Cabo Verde archipelago: the Senegambian outpost of Atlantic slave trade
In order to study the matrilineal genetic composition in Cabo Verde (Republic of Cape Verde), an archipelago that used to serve as a Portuguese entrepôt of the Atlantic slave trade, we have analysed a total of 292 mtDNAs sampled from the seven inhabited islands for the hypervariable segment I (HVS-I) and some characteristic RFLPs of the coding regions. The different settlement history of the northwestern group of the islands is well reflected in the mtDNA pool. The total Cabo Verde sample clearly displays the characteristic mitochondrial features of the Atlantic fringe of western Africa and testifies to almost no mitochondrial input from the Portuguese colonizers.info:eu-repo/semantics/publishedVersio
- …