324 research outputs found
Online Multi-Coloring with Advice
We consider the problem of online graph multi-coloring with advice.
Multi-coloring is often used to model frequency allocation in cellular
networks. We give several nearly tight upper and lower bounds for the most
standard topologies of cellular networks, paths and hexagonal graphs. For the
path, negative results trivially carry over to bipartite graphs, and our
positive results are also valid for bipartite graphs. The advice given
represents information that is likely to be available, studying for instance
the data from earlier similar periods of time.Comment: IMADA-preprint-c
Lower bounds for several online variants of bin packing
We consider several previously studied online variants of bin packing and
prove new and improved lower bounds on the asymptotic competitive ratios for
them. For that, we use a method of fully adaptive constructions. In particular,
we improve the lower bound for the asymptotic competitive ratio of online
square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201
Tight bounds on the competitive ratio on accomodating sequences for the seat reservation problem
The unit price seat reservation problem is investigated. The seat reservation problem is the problem of assigning seat numbers on-line to requests for reservations in a train traveling through stations. We are considering the version where all tickets have the same price and where requests are treated fairly, i.e., a request which can be fulfilled must be granted. For fair deterministic algorithms, we provide an asymptotically matching upper bound to the existing lower bound which states that all fair algorithms for this problem are frac{1{2-competitive on accommodating sequences, when there are at least three seats. Additionally, we give an asymptotic upper bound of frac{7{9 for fair randomized algorithms against oblivious adversaries. We also examine concrete on-line algorithms, First-Fit and Random, for the special case of two seats. Tight analyses of their performance are given
Spectral Karyotyping for identification of constitutional chromosomal abnormalities at a national reference laboratory
Spectral karyotyping is a diagnostic tool that allows visualization of chromosomes in different colors using the FISH technology and a spectral imaging system. To assess the value of spectral karyotyping analysis for identifying constitutional supernumerary marker chromosomes or derivative chromosomes at a national reference laboratory, we reviewed the results of 179 consecutive clinical samples (31 prenatal and 148 postnatal) submitted for spectral karyotyping. Over 90% of the cases were requested to identify either small supernumerary marker chromosomes (sSMCs) or chromosomal exchange material detected by G-banded chromosome analysis. We also reviewed clinical indications of those cases with marker chromosomes in which chromosomal origin was identified by spectral karyotyping. Our results showed that spectral karyotyping identified the chromosomal origin of marker chromosomes or the source of derivative chromosomal material in 158 (88%) of the 179 clinical cases; the identification rate was slightly higher for postnatal (89%) compared to prenatal (84%) cases. Cases in which the origin could not be identified had either a small marker chromosome present at a very low level of mosaicism (< 10%), or contained very little euchromatic material. Supplemental FISH analysis confirmed the spectral karyotyping results in all 158 cases. Clinical indications for prenatal cases were mainly for marker identification after amniocentesis. For postnatal cases, the primary indications were developmental delay and multiple congenital anomalies (MCA). The most frequently encountered markers were of chromosome 15 origin for satellited chromosomes, and chromosomes 2 and 16 for non-satellited chromosomes. We were able to obtain pertinent clinical information for 47% (41/88) of cases with an identified abnormal chromosome. We conclude that spectral karyotyping is sufficiently reliable for use and provides a valuable diagnostic tool for establishing the origin of supernumerary marker chromosomes or derivative chromosomal material that cannot be identified with standard cytogenetic techniques
Two philosophies for solving non-linear equations in algebraic cryptanalysis
Algebraic Cryptanalysis [45] is concerned with solving of particular systems of multivariate non-linear equations which occur in cryptanalysis. Many different methods for solving such problems have been proposed in cryptanalytic literature: XL and XSL method, Gröbner bases, SAT solvers, as well as many other. In this paper we survey these methods and point out that the main working principle in all of them is essentially the same. One quantity grows faster than another quantity which leads to a “phase transition” and the problem becomes efficiently solvable. We illustrate this with examples from both symmetric and asymmetric cryptanalysis. In this paper we point out that there exists a second (more) general way of formulating algebraic attacks through dedicated coding techniques which involve redundancy with addition of new variables. This opens numerous new possibilities for the attackers and leads to interesting optimization problems where the existence of interesting equations may be somewhat deliberately engineered by the attacker
Systematic Construction of Nonlinear Product Attacks on Block Ciphers
A major open problem in block cipher cryptanalysis is discovery of new invariant properties of complex type. Recent papers show that this can be achieved for SCREAM, Midori64, MANTIS-4, T-310 or for DES with modified S-boxes. Until now such attacks are hard to find and seem to happen by some sort of incredible coincidence. In this paper we abstract the attack from any particular block cipher. We study these attacks in terms of transformations on multivariate polynomials. We shall demonstrate how numerous variables including key variables may sometimes be eliminated and at the end two very complex Boolean polynomials will become equal. We present a general construction of an attack where multiply all the polynomials lying on one or several cycles. Then under suitable conditions the non-linear functions involved will be eliminated totally. We obtain a periodic invariant property holding for any number of rounds. A major difficulty with invariant attacks is that they typically work only for some keys. In T-310 our attack works for any key and also in spite of the presence of round constants
Quantum Algorithms for the Most Frequently String Search, Intersection of Two String Sequences and Sorting of Strings Problems
We study algorithms for solving three problems on strings. The first one is
the Most Frequently String Search Problem. The problem is the following. Assume
that we have a sequence of strings of length . The problem is finding
the string that occurs in the sequence most often. We propose a quantum
algorithm that has a query complexity . This algorithm
shows speed-up comparing with the deterministic algorithm that requires
queries. The second one is searching intersection of two sequences
of strings. All strings have the same length . The size of the first set is
and the size of the second set is . We propose a quantum algorithm that
has a query complexity . This algorithm shows
speed-up comparing with the deterministic algorithm that requires
queries. The third problem is sorting of strings of length
. On the one hand, it is known that quantum algorithms cannot sort objects
asymptotically faster than classical ones. On the other hand, we focus on
sorting strings that are not arbitrary objects. We propose a quantum algorithm
that has a query complexity . This algorithm shows
speed-up comparing with the deterministic algorithm (radix sort) that requires
queries, where is a size of the alphabet.Comment: THe paper was presented on TPNC 201
Quality of life assessment as a predictor of survival in non-small cell lung cancer
<p>Abstract</p> <p>Background</p> <p>There are conflicting and inconsistent results in the literature on the prognostic role of quality of life (QoL) in cancer. We investigated whether QoL at admission could predict survival in lung cancer patients.</p> <p>Methods</p> <p>The study population consisted of 1194 non-small cell lung cancer patients treated at our institution between Jan 2001 and Dec 2008. QoL was evaluated using EORTC-QLQ-C30 prior to initiation of treatment. Patient survival was defined as the time interval between the date of first patient visit and the date of death from any cause/date of last contact. Univariate and multivariate Cox regression evaluated the prognostic significance of QoL.</p> <p>Results</p> <p>Mean age at presentation was 58.3 years. There were 605 newly diagnosed and 589 previously treated patients; 601 males and 593 females. Stage of disease at diagnosis was I, 100; II, 63; III, 348; IV, 656; and 27 indeterminate. Upon multivariate analyses, global QoL as well as physical function predicted patient survival in the entire study population. Every 10-point increase in physical function was associated with a 10% increase in survival (95% CI = 6% to 14%, p < 0.001). Similarly, every 10-point increase in global QoL was associated with a 9% increase in survival (95% CI = 6% to 11%, p < 0.001). Furthermore, physical function, nausea/vomiting, insomnia, and diarrhea (p < 0.05 for all) in newly diagnosed patients, but only physical function (p < 0.001) in previously treated patients were predictive of survival.</p> <p>Conclusions</p> <p>Baseline global QoL and physical function provide useful prognostic information in non-small cell lung cancer patients.</p
A First-Order SCA Resistant AES without Fresh Randomness
Since the advent of Differential Power Analysis (DPA) in the late 1990s protecting embedded devices against Side-Channel Analysis (SCA) attacks has been a major research effort. Even though many different first-order secure masking schemes are available today, when applied to the AES S-box they all require fresh random bits in every evaluation. As the quality criteria for generating random numbers on an embedded device are not well understood, an integrated Random Number Generator (RNG) can be the weak spot of any protected implementation and may invalidate an otherwise secure implementation. We present a new construction based on Threshold Implementations and Changing of the Guards to realize a first-order secure AES with zero per-round randomness. Hence, our design does not need a built-in RNG, thereby enhancing security and reducing the overhead
- …