33 research outputs found
Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid
The mechanical response and load bearing capacity of high performance polymer
composites changes due to diffusion of a fluid, temperature, oxidation or the
extent of the deformation. Hence, there is a need to study the response of
bodies under such degradation mechanisms. In this paper, we study the effect of
degradation and healing due to the diffusion of a fluid on the response of a
solid which prior to the diffusion can be described by the generalized
neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves
like an elastic body (i.e., it does not produce entropy) within a purely
mechanical context - creeps and stress relaxes when infused with a fluid and
behaves like a body whose material properties are time dependent. We
specifically investigate the torsion of a generalized neo-Hookean circular
cylindrical annulus infused with a fluid. The equations of equilibrium for a
generalized neo-Hookean solid are solved together with the convection-diffusion
equation for the fluid concentration. Different boundary conditions for the
fluid concentration are also considered. We also solve the problem for the case
when the diffusivity of the fluid depends on the deformation of the generalized
neo-Hookean solid.Comment: 24 pages, 10 figures, submitted to Mechanics of Time-dependent
Material