14,552 research outputs found

    Spin systems with dimerized ground states

    Full text link
    In view of the numerous examples in the literature it is attempted to outline a theory of Heisenberg spin systems possessing dimerized ground states (``DGS systems") which comprises all known examples. Whereas classical DGS systems can be completely characterized, it was only possible to provide necessary or sufficient conditions for the quantum case. First, for all DGS systems the interaction between the dimers must be balanced in a certain sense. Moreover, one can identify four special classes of DGS systems: (i) Uniform pyramids, (ii) systems close to isolated dimer systems, (iii) classical DGS systems, and (iv), in the case of s=1/2s=1/2, systems of two dimers satisfying four inequalities. Geometrically, the set of all DGS systems may be visualized as a convex cone in the linear space of all exchange constants. Hence one can generate new examples of DGS systems by positive linear combinations of examples from the above four classes.Comment: With corrections of proposition 4 and other minor change

    Conclusive and arbitrarily perfect quantum state transfer using parallel spin chain channels

    Full text link
    We suggest a protocol for perfect quantum communication through spin chain channels. By combining a dual-rail encoding with measurements only at the receiving end, we can get conclusively perfect state transfer, whose probability of success can be made arbitrarily close to unity. As an example of such an amplitude delaying channel, we show how two parallel Heisenberg spin chains can be used as quantum wires. Perfect state transfer with a probability of failure lower than P in a Heisenberg chain of N spin-1/2 particles can be achieved in a timescale of the order of N^1.7|ln(P)|. We demonstrate that our scheme is more robust to decoherence and non-optimal timing than any scheme using single spin chains.Comment: 6 pages, 4 figures ; expanded version inluding discussion of transmission tim

    Quantum Energy Teleportation in Spin Chain Systems

    Full text link
    We propose a protocol for quantum energy teleportation which transports energy in spin chains to distant sites only by local operations and classical communication. By utilizing ground-state entanglement and notion of negative energy density region, energy is teleported without breaking any physical laws including causality and local energy conservation. Because not excited physical entity but classical information is transported in the protocol, the dissipation rate of energy in transport is expected to be strongly suppressed.Comment: 22 pages, 4 figure, to be published in JPS

    Equivalent relaxations of optimal power flow

    Get PDF
    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation is tighter than the second-order cone relaxation but requires a heavier computational effort, and the chordal relaxation strikes a good balance. Simulations are used to illustrate these results.Comment: 12 pages, 7 figure

    Electronic bandstructure and optical gain of lattice matched III-V dilute nitride bismide quantum wells for 1.55 μ\mum optical communication systems

    Full text link
    Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 μ\mum optical communication systems. Incorporating dilute amounts of Bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of Nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaNx_xBiy_yAs1xy_{1-x-y}/GaAs quaternary alloy quantum well (QW) based on the 16-band k\cdotp model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing (BAC) and valence band anticrossing (VBAC) model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain and differential gain; and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 μ\mum. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3 nm thick GaN3_3Bi5.17_{5.17}As91.83_{91.83} lattice matched QW was most suited for 1.55 μ\mum (0.8 eV) GaAs-based photonic applications.Comment: Accepted in AIP Journal of Applied Physic

    Luminescence of Some Organic Compounds Under X-Ray Excitation

    Get PDF

    Temperature Variation of Intensity of Luminescence Under X-Ray Excitation

    Get PDF

    On the After-Glow of Sodium Chloride and Its Decay

    Get PDF
    Abstract not Availabl
    corecore