250 research outputs found

    QCD Analysis of Polarized Deep Inelastic Scattering Data

    Get PDF
    A QCD analysis of the world data on inclusive polarized deep inelastic scattering of leptons on nucleons is presented in leading and next-to-leading order. New parameterizations are derived for the quark and gluon distributions and the value of αs(MZ)\alpha_s(M_Z) is determined. Emphasis is put on the derivation of fully correlated error bands for these distributions which are directly applicable to determine experimental errors of other polarized observables. The impact of the variation of both the renormalization and factorization scales on the value of αs\alpha_s is studied. Finally a factorization-scheme invariant QCD analysis based on the observables g1(x,Q2)g_1(x,Q^2) and dg1(x,Q2)/dlog(Q2)d g_1(x,Q^2)/d \log(Q^2) is performed in next-to-leading order, which is compared to the standard analysis.Comment: 6 pages LATEX, 4 aps style and other files, 3 eps-files, to appear in the Proceedings of `QCD at Work', Martina Franca, June 200

    Polarized Parton Densities

    Get PDF
    In this talk we summarize main results of a recent determination of the polarized deeply inelastic parton distributions to NLO from the world data. In the analysis the LO and NLO parton densities and their 1σ1\sigma statistical errors were derived and parameterized. The strong coupling constant αs(MZ2)\alpha_s(M_Z^2) is determined αs(MZ2)=0.113±0.004(stat.)± 0.004(fac.)+0.008/0.005(ren.)\alpha_s(M_Z^2) = 0.113 \pm 0.004 {\rm (stat.)} \pm~0.004 {\rm (fac.)} +0.008/-0.005 {\rm (ren.)} Comparisons of the low moments of the parton densities with recent lattice results are given. A detailed error-analysis of the gluon density is performed.Comment: 3 pages LATEX, 1 style file, 1 eps file, to appear in the Proceedings of PANIC '02, Osaka, Ocrober 200

    Comparison of numerical solutions for Q^2 evolution equations

    Full text link
    Q^2 evolution equations are important not only for describing hadron reactions in accelerator experiments but also for investigating ultrahigh-energy cosmic rays. The standard ones are called DGLAP evolution equations, which are integrodifferential equations. There are methods for solving the Q^2 evolution equations for parton-distribution and fragmentation functions. Because the equations cannot be solved analytically, various methods have been developed for the numerical solution. We compare brute-force, Laguerre-polynomial, and Mellin-transformation methods particularly by focusing on the numerical accuracy and computational efficiency. An efficient solution could be used, for example, in the studies of a top-down scenario for the ultrahigh-energy cosmic rays.Comment: 12 pages, LaTeX, 13 eps files, Journal of Computational Physics in press, http://hs.phys.saga-u.ac.j

    Target Mass Corrections to the Spin-dependent Structure Functions

    Get PDF
    The target mass corrections to the twist-2 contributions of the spin-dependent structure functions are calculated using operator product expansion in lowest order in QCD. The influence of such corrections to the different relations between the structure functions is considered.Comment: 2 pages LATEX, contract number adde

    Twist-2 Heavy Flavor Contributions to the Structure Function g2(x,Q2)g_2(x,Q^2)

    Full text link
    The twist--2 heavy flavor contributions to the polarized structure function g2(x,Q2)g_2(x,Q^2) are calculated. We show that this part of g2(x,Q2)g_2(x,Q^2) is related to the heavy flavor contribution to g1(x,Q2)g_1(x,Q^2) by the Wandzura--Wilczek relation to all orders in the strong coupling constant. Numerical results are presented.Comment: 17 pages LATEX, 1 style files, 4 figure
    corecore