38 research outputs found

    Hyperfine Suppression of 23S133PJ2^3{\rm S}_1 - 3^3{\rm P}_J Transitions in 3^3He

    Full text link
    Two anomalously weak transitions within the 23S1  33PJ2 ^3{\rm S}_1~-~3 ^3{\rm P}_J manifolds in 3^3He have been identified. Their transition strengths are measured to be 1,000 times weaker than that of the strongest transition in the same group. This dramatic suppression of transition strengths is due to the dominance of the hyperfine interaction over the fine structure interaction. An alternative selection rule based on \textit{IS}-coupling (where the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative understanding of the transition strengths. It is shown that the small deviations from the \textit{IS}-coupling model are fully accounted for by an exact diagonalization of the strongly interacting states.Comment: 4 Pages, 2 figures, 1 table. Accepted for publication in PR

    First Measurement of the Atomic Electric Dipole Moment of \u3csup\u3e225\u3c/sup\u3eRa

    Get PDF
    The radioactive radium-225 (225Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, 225Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of 225Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d(225Ra)|\u3c5.0×10−22  e cm (95% confidence)

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan

    Full text link
    This whitepaper presents the research priorities decided on by attendees of the 2022 Town Meeting for Fundamental Symmetries, Neutrons and Neutrinos, which took place December 13-15, 2022 in Chapel Hill, NC, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 275 scientists registered for the meeting. The whitepaper makes a number of explicit recommendations and justifies them in detail
    corecore