5 research outputs found

    Unsteady aerodynamics loads during flapping flight of birds; case study : starling and sandpiper

    Get PDF
    Flapping wing is one of the most widespread propulsion methods found in nature. However, the current understanding of the bird aerodynamics is incomplete. The role of unsteady motion in the flow and its contribution to the aerodynamics is still an open question. The current study deals with the estimation of unsteady aerodynamic forces on freely flying birds through analysis of wingbeat kinematics and near wake flow measurements using long duration time-resolved particle image velocimetry. Two bird species have been investigated, the starling and sandpiper. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases of flight. Lift and drag were obtained using the momentum equation for viscous flows and were found to share a highly unsteady behavior. The two birds show similar behavior during the downstroke phase of flight, whereas the sandpiper was shown to have a district signature during its upstroke phase. The contribution of the circulatory lift component is shown to be significant when estimating lift (or power) of birds in flapping flight. Moreover, the unsteady drag term was found to have a crucial role in the balance of drag (or thrust), particularly during transition phases. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag and maximize lift during flapping flight.Papers presented to the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain on 11-13 July 2016

    Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation

    No full text
    Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named \u2018double branch\u2019). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.Peer reviewed: YesNRC publication: Ye

    Estimation of unsteady aerodynamics in the wake of a freely flying european starling (Sturnus vulgaris)

    Get PDF
    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight
    corecore