52,897 research outputs found

    Circumstellar environment of the M-type AGB star R Dor. APEX spectral scan at 159.0368.5159.0-368.5 GHz

    Get PDF
    Our current insights into the circumstellar chemistry of asymptotic giant branch (AGB) stars are largely based on studies of carbon-rich stars and stars with high mass-loss rates. In order to expand the current molecular inventory of evolved stars we present a spectral scan of the nearby, oxygen-rich star R Dor, a star with a low mass-loss rate (2×107M\sim2\times10^{-7}M_{\odot}/yr). We carried out a spectral scan in the frequency ranges 159.0-321.5GHz and 338.5-368.5 GHz (wavelength range 0.8-1.9mm) using the SEPIA/Band-5 and SHeFI instruments on the APEX telescope and we compare it to previous surveys, including one of the oxygen-rich AGB star IK Tau, which has a high mass-loss rate (5×106M\sim5\times10^{-6}M_{\odot}/yr). The spectrum of R Dor is dominated by emission lines of SO2_2 and the different isotopologues of SiO. We also detect CO, H2_2O, HCN, CN, PO, PN, SO, and tentatively TiO2_2, AlO, and NaCl. Sixteen out of approximately 320 spectral features remain unidentified. Among these is a strong but previously unknown maser at 354.2 GHz, which we suggest could pertain to H2_2SiO, silanone. With the exception of one, none of these unidentified lines are found in a similarly sensitive survey of IK Tau performed with the IRAM 30m telescope. We present radiative transfer models for five isotopologues of SiO (28^{28}SiO, 29^{29}SiO, 30^{30}SiO, Si17^{17}O, Si18^{18}O), providing constraints on their fractional abundance and radial extent. We derive isotopic ratios for C, O, Si, and S and estimate that R Dor likely had an initial mass in the range 1.3-1.6MM_{\odot}, in agreement with earlier findings based on models of H2_2O line emission. From the presence of spectral features recurring in many of the measured thermal and maser emission lines we tentatively identify up to five kinematical components in the outflow of R Dor, indicating deviations from a smooth, spherical wind.Comment: 66 pages, 25 figures, Accepted for publication in Astronomy & Astrophysics. Fully reduced FITS spectrum made available through CD

    Parity-violating electron scattering and nucleon structure

    Get PDF
    The measurement of parity violation in the helicity dependence of electron-nucleon scattering provides unique information about the basic quark structure of the nucleons. This review presents the general formalism of parity-violating electron scattering, with emphasis on elastic electron-nucleon scattering. The physics issues addressed by such experiments are discussed, and the major goals of the presently envisioned experimental program are identified. Results from a recent series of experiments are summarized and the future prospects of this program are discussed

    Antiferromagnetism and Superconductivity in a Model with Extended Pairing Interactions

    Full text link
    The competition between antiferromagnetism and the d+idd+id superconducting state is studied in a model with near and next near neighbour interactions in the absence of any on-site repulsion. A mean field study shows that it is possible to have simultaneous occurrence of an antiferromagnetic and a singlet d+idd+id superconducting state in this model. In addition, such a coexistence generates a triplet d+idd+id superconducting order parameter with centre of mass momentum Q=(π,π)Q=(\pi, \pi) {\it dynamically} having the same orbital symmetry as the singlet superconductor. Inclusion of next nearest neighbour hopping in the band stabilises the dxyd_{xy} superconducting state away from half filling, the topology of the phase diagram, though, remains similar to the near neighbour model. In view of the very recent observation of a broad region of coexistence of antiferrmagnetic and unconventional superconducting states in organic superconductors, the possibility of observation of the triplet state has been outlined.Comment: 12 pages(tex file), 7 figures (ps files

    Designers manual for circuit design by analog/digital techniques Final report

    Get PDF
    Manual for designing circuits by hybrid compute
    corecore