923 research outputs found

    Orbital order in bilayer graphene at filling factor ν=1\nu =-1

    Full text link
    In a graphene bilayer with Bernal stacking both n=0n=0 and n=1n=1 orbital Landau levels have zero kinetic energy. An electronic state in the N=0 Landau level consequently has three quantum numbers in addition to its guiding center label: its spin, its valley index KK or KK^{\prime}, and an orbital quantum number n=0,1.n=0,1. The two-dimensional electron gas (2DEG) in the bilayer supports a wide variety of broken-symmetry states in which the pseudospins associated these three quantum numbers order in a manner that is dependent on both filling factor ν\nu and the electric potential difference between the layers. In this paper, we study the case of ν=1\nu =-1 in an external field strong enough to freeze electronic spins. We show that an electric potential difference between layers drives a series of transitions, starting from interlayer-coherent states (ICS) at small potentials and leading to orbitally coherent states (OCS) that are polarized in a single layer. Orbital pseudospins carry electric dipoles with orientations that are ordered in the OCS and have Dzyaloshinskii-Moriya interactions that can lead to spiral instabilities. We show that the microwave absorption spectra of ICSs, OCSs, and the mixed states that occur at intermediate potentials are sharply distinct.Comment: 21 pages, 14 figure

    Renormalized Landau Levels and Particle-Hole Symmetry in Graphene

    Full text link
    In this proceedings paper we report on a calculation of graphene's Landau levels in a magnetic field. Our calculations are based on a self-consistent Hartree-Fock approximation for graphene's massless-Dirac continuum model. We find that because of graphene's chiral band structure interactions not only shift Landau-level energies, as in a non-relativistic electron gas, but also alter Landau level wavefunctions. We comment on the subtle continuum model regularization procedure necessary to correctly maintain the lattice-model's particle hole symmetry properties

    Orbital and interlayer Skyrmions crystals in bilayer graphene

    Full text link
    A graphene bilayer in a transverse magnetic field has a set of Landau levels with energies E=±N(N+1)ωcE=\pm \sqrt{N(N+1)}\hslash \omega_{c}^{\ast} where ωc\omega_{c}^{\ast} is the effective cyclotron frequency and % N=0,1,2,... All Landau levels but N=0 are four times degenerate counting spin and valley degrees of freedom. The Landau level N=0 has an extra degeneracy due to the fact that orbitals n=0n=0 and n=1n=1 both have zero kinetic energies. At integer filling factors, Coulomb interactions produce a set of broken-symmetry states with partial or full alignement in space of the valley and orbital pseudospins. These quantum Hall pseudo-ferromagnetic states support topological charged excitations in the form of orbital and valley Skyrmions. Away from integer fillings, these topological excitations can condense to form a rich variety of Skyrme crystals with interesting properties. We study in this paper different crystal phases that occur when an electric field is applied between the layers. We show that orbital Skyrmions, in analogy with spin Skyrmions, have a texture of electrical dipoles that can be controlled by an in-plane electric field. Moreover, the modulation of electronic density in the crystalline phases are experimentally accessible through a measurement of their local density of statesComment: 18 pages with 13 figure

    The Role of Electron-electron Interactions in Graphene ARPES Spectra

    Full text link
    We report on a theoretical study of the influence of electron-electron interactions on ARPES spectra in graphene that is based on the random-phase-approximation and on graphene's massless Dirac equation continuum model. We find that level repulsion between quasiparticle and plasmaron resonances gives rise to a gap-like feature at small k. ARPES spectra are sensitive to the electron-electron interaction coupling strength αgr\alpha_{\rm gr} and might enable an experimental determination of this material parameter.Comment: 5 Pages, 4 Figures, Submitte

    Intra-Landau level Cyclotron Resonance in Bilayer Graphene

    Full text link
    Interaction driven integer quantum Hall effects are anticipated in graphene bilayers because of the near-degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate k3/2k^{3/2} dispersion. We speculate on the possibility of unususal localization physics associated with these modes.Comment: 5 pages, 2 figure

    Experimental and numerical validation of active flaps for wind turbine blades

    Get PDF
    An industrial active flap concept for wind turbine rotor blades is validated numerically by means of CFD, as well as experimentally in a wind tunnel environment. This paper presents the numerical and experimental results, as well as a discussion regarding the testing of airfoils equipped with active flaps with a highly loaded aft portion. A conceptual implementation for an offshore wind turbine and the potential for load reduction is shown by means of aeroelastic calculations. The work presented herein is conducted within the frame of the Induflap2 project and is partially funded by the Danish funding board EUDP

    Numerical studies of the fractional quantum Hall effect in systems with tunable interactions

    Full text link
    The discovery of the fractional quantum Hall effect in GaAs-based semiconductor devices has lead to new advances in condensed matter physics, in particular the possibility for exotic, topological phases of matter that possess fractional, and even non-Abelian, statistics of quasiparticles. One of the main limitations of the experimental systems based on GaAs has been the lack of tunability of the effective interactions between two-dimensional electrons, which made it difficult to stabilize some of the more fragile states, or induce phase transitions in a controlled manner. Here we review the recent studies that have explored the effects of tunability of the interactions offered by alternative two-dimensional systems, characterized by non-trivial Berry phases and including graphene, bilayer graphene and topological insulators. The tunability in these systems is achieved via external fields that change the mass gap, or by screening via dielectric plate in the vicinity of the device. Our study points to a number of different ways to manipulate the effective interactions, and engineer phase transitions between quantum Hall liquids and compressible states in a controlled manner.Comment: 9 pages, 4 figures, updated references; review for the CCP2011 conference, to appear in "Journal of Physics: Conference Series

    Vaccine-like and Prophylactic Treatments of EAE with Novel IDomain Antigen Conjugates (IDAC): Targeting Multiple Antigenic Peptides to APC

    Get PDF
    The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH2 peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering i.v or s.c. injections of IDAC in a prophylactic or a vaccine-like dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccine-like manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-33 treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-33treated mice. In conclusion, the Idomain can effectively deliver antigenic peptides in a vaccine-like or prophylactic manner for inducing immunotolerance in the EAE mouse model
    corecore