21 research outputs found
Bridging Autoantibodies and Arthritis: The Role of Fc Receptors
Pathophysiology and treatment of rheumatic disease
IMMUNOSUPPRESSIVE DX5+T CELLS ARE POTENT INHIBITORS OF TH-1 RESPONSES VIA MODULATION OF DCS
Pathophysiology and treatment of rheumatic disease
DX5+CD4+T cells modulate CD4+T-cell response via inhibition of IL-12 production by DCs
Pathophysiology and treatment of rheumatic disease
Abatacept decreases disease activity in a absence of CD4(+) T cells in a collagen-induced arthritis model
Pathophysiology and treatment of rheumatic disease
DX5(+) CD4(+) T cells modulate cytokine production by CD4(+) T cells towards IL-10 via the production of IL-4
CD4(+) Th cells play a critical role in orchestrating the adaptive immune response. Uncontrolled Th1 responses are implicated in the pathogenesis of autoimmune diseases. T cells with immune-modulatory properties are beneficial for inhibiting such inflammatory responses. Previously we demonstrated that repetitive injections of immature DC induce expansion of DX5(+)CD4(+) T cells, which upon adoptive transfer show potent regulatory properties in murine collagen-induced arthritis as well as in delayed-hypersensitivity models. However, their regulatory mechanism remains to be defined. Here, we analyzed the effect of DX5(+)CD4(+) T cells on other CD4(+) T cells in vitro. Although proliferation of naive CD4(+) T cells upon antigenic triggering was not altered in the presence of DX5(+)CD4(+) T cells, there was a striking difference in cytokine production. In the presence of DX5(+)CD4(+) T cells, an IL-10-producing CD4(+) T-cell response was induced instead of a predominant IFN-gamma-producing Th1 response. This modulation did not require cell-cell contact. Instead, IL-4 produced by DX5(+)CD4(+) T cells was primarily involved in the inhibition of IFN-gamma and promotion of IL-10 production by CD4(+) T cells. Together, our data indicate that DX5(+)CD4(+) T cells modulate the outcome of Th-responses by diverting Th1-induction into Th responses characterized by the production of IL-10.Pathophysiology and treatment of rheumatic disease
ANTI-CCP ANTIBODIES ARE A COLLECTION OF ACPA THAT ARE CROSS-REACTIVE TO MULTIPLE CITRULLINATED ANTIGENS
Pathophysiology and treatment of rheumatic disease
Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities
Objective Anti-citrullinated protein antibodies (ACPA) and anti-cyclic citrullinated peptide (anti-CCP) antibodies are a hallmark of rheumatoid arthritis and are believed to play a role in disease pathogenesis. These antibodies are typically detected in ELISA with citrullinated peptides (eg, CCP2) or proteins as antigens. The absolute concentration of anti-CCP antibodies in serum is unknown. Although antibodies to several citrullinated proteins can mainly be detected within anti-CCP-positive sera, it is currently unknown whether anti-CCP antibodies are in fact ACPA. Likewise, it is unknown to what extent antibody responses to different citrullinated antigens are crossreactive.
Methods An affinity purification method was established in which citrullinated antigen-specific antibodies were eluted from ELISA plates and then used for detection of other citrullinated antigens in ELISA or western blot. For additional crossreactivity studies, ELISA-based inhibition assays were performed with citrullinated or control peptides as inhibitors.
Results The concentration of anti-CCP IgG antibodies was estimated to be at least 30 mu g/ml in patients with high anti-CCP levels (> 1600 mu g/ml). Affinity-purified anti-CCP antibodies were able to recognise citrullinated fibrinogen (cit-fib) and citrullinated myelin basic protein (cit-MBP) on western blot. Furthermore, antibodies specific for cit-fib and cit-MBP were crossreactive. However, additional crossreactivity studies indicated that non-overlapping antibody responses to citrullinated peptides can also exist in patients.
Conclusions This report shows for the first time that anti-CCP antibodies recognise multiple citrullinated proteins and are thus a collection of ACPA. More importantly, the data indicate that different ACPA responses are crossreactive, but that crossreactivity is not complete, as distinct non-crossreactive responses can also be detected in patients with RA.Pathophysiology and treatment of rheumatic disease
Identification of Citrullinated Vimentin Peptides as T Cell Epitopes in HLA-DR4-Positive Patients With Rheumatoid Arthritis
Objective. Antibodies directed against citrullinated proteins (ACPAs) are highly specific for rheumatoid arthritis (RA). The production of ACPAs is most likely dependent on the presence of T cells, since ACPAs undergo isotype switching and are associated with the shared epitope (SE)-containing HLA-DRB1 alleles. Vimentin is a likely candidate protein for T cell recognition, since > 90% of patients positive for ACPAs that are reactive with (peptides derived from) citrullinated vimentin carry SE-containing HLA-DRB1 alleles. The aim of this study was to identify citrullinated vimentin peptides that are presented to HLA-DRB1*0401-restricted T cells.
Methods. HLA-DR4-transgenic mice were immunized with all possible citrulline-containing peptides derived from vimentin, and T cell reactivity was analyzed. Peptides recognized in a citrulline-specific manner by T cells were selected and analyzed for their ability to be processed from the entire vimentin protein. A first inventory of the selected epitopes recognized by T cells was performed using peripheral blood mononuclear cells (PBMCs) from ACPA+, HLA-DR4+ patients with RA.
Results. A citrulline-specific response was observed for 2 of the peptides analyzed in DR4-transgenic mice. These peptides were found to be naturally processed from the vimentin protein, since citrullinated vimentin was recognized by peptide-specific T cells. T cell reactivity against these peptides was also observed in cultures of PBMCs from RA patients.
Conclusion. This study identifies, for the first time, 2 naturally processed peptides from vimentin that are recognized by HLA-DRB1*0401-restricted T cells in a citrulline-specific manner. These peptides can be recognized by T cells in ACPA+, HLA-DR4+ patients with RA, as shown in a first inventory.Stemcel biology/Regenerative medicine (incl. bloodtransfusion
Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes
Segmental duplications (SDs) comprise about 5% of the human genome and are enriched for immune genes. SD loci often show copy numbers variations (CNV), which are difficult to tag with genotyping methods. CNV in the Fcgamma receptor region (FCGR) has been suggested to be associated with rheumatic diseases. The objective of this study was to delineate association of FCGR-CNV with rheumatoid arthritis (RA), coeliac disease and Inflammatory bowel disease incidence. We developed a method to accurately quantify CNV in SD loci based on the intensity values from the Immunochip platform and applied it to the FCGR locus. We determined the method\u27s validity using three independent assays: segregation analysis in families, arrayCGH, and whole genome sequencing. Our data showed the presence of two separate CNVs in the FCGR locus. The first region encodes FCGR2A, FCGR3A and part of FCGR2C gene, the second encodes another part of FCGR2C, FCGR3B and FCGR2B. Analysis of CNV status in 4578 individuals with RA and 5457 controls indicated association of duplications in the FCGR3B gene in antibody-negative RA (P=0.002, OR=1.43). Deletion in FCGR3B was associated with increased risk of antibody-positive RA, consistently with previous reports (P=0.023, OR=1.23). A clear genotype-phenotype relationship was observed: CNV polymorphisms of the FCGR3A gene correlated to CD16A expression (encoded by FCGR3A) on CD8 T-cells. In conclusion, our method allows determining the CNV status of the FCGR locus, we identified association of CNV in FCGR3B to RA and showed a functional relationship between CNV in the FCGR3A gene and CD16A expression.European Journal of Human Genetics advance online publication, 13 May 2015; doi:10.1038/ejhg.2015.95