29 research outputs found

    miR-CATCH: microRNA capture affinity technology.

    Get PDF
    Several experimental methods exist to explore the microRNA (miRNA) regulome. These methods almost exclusively focus on multiple targets bound to a single, or perhaps a few miRNAs of interest. Here, we describe a microRNA capture affinity technology (miR-CATCH) which uses an affinity capture oligonucleotide to co-purify a single target messenger RNA (mRNA) together with all its endogenously bound miRNAs. This bench-top method is similar to RNA immunoprecipitation (RIP) and provides an experimental alternative to computational miRNA target prediction

    miR-CATCH: MicroRNA Capture Affinity Technology

    No full text

    Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer

    Full text link
    Non-small cell lung cancer (NSCLC) remains the most common cause of cancer death worldwide due its resistance to chemotherapy and aggressive tumor growth. Polo-like kinase 1 (PLK1) is a serine-threonine protein kinase which is overexpressed in cancer cells, and plays a major role in regulating tumor growth. A number of PLK1 inhibitors are in clinical trial; however, poor tumor bioavailability and off-target effects limit their efficacy. Short-interfering-RNA (siRNA) holds promise as a class of therapeutics, which can selectively silence disease-causing genes. However, siRNA cannot enter cells without a delivery vehicle. Herein, we investigated whether RNAi-interfering nanoparticles could deliver siRNA to NSCLC cells and silence PLK1 expression in vitro and in vivo. iNOP-7 was non-toxic, and delivered siRNA with high efficiency to NSCLC cells. iNOP-7-PLK1 siRNA silenced PLK1 expression and reduced NSCLC growth in vitro. Notably, iNOP-7 delivered siRNA to orthotopic lung tumors in mice, and administration of iNOP-7-PLK1 siRNA reduced lung tumor burden. These novel data show that iNOP-7 can deliver siRNA against PLK1 to NSCLC cells, and decrease cell proliferation both in vitro and in vivo. iNOP-7-PLK1 siRNA may provide a novel therapeutic strategy for the treatment of NSCLC as well as other cancers which aberrantly express this gene

    Dicer-Labile PEG Conjugates for siRNA Delivery

    Get PDF
    Poly(ethylene glycol) (PEG) conjugates of Dicer-substrate small interfering RNA (DsiRNA) have been prepared to investigate a new siRNA release strategy. 3'-sense or 5'-antisense thiol-modified, blunt-ended DsiRNAs, inhibiting enhanced green fluorescent protein (eGFP) expression, were covalently conjugated to PEG with varying molecular weights (2, 10, and 20 kg/mol) through a stable thioether bond using a Michael addition reaction. The DsiRNA conjugates with 2 kg/mol PEG (both 3'-sense or 5'-antisense strand conjugated) and the 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA were efficiently cleaved by recombinant human Dicer to 21-mer siRNA, as determined by gel electrophoresis. Importantly, 2 and 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA showed potent gene silencing activity in human neuroblastoma (SH-EP) cells, stably expressing eGFP, at both the mRNA and protein levels. Moreover, the 10 kg/mol PEG conjugates of the 3'-sense strand of DsiRNA were less immunogenic when compared with the unmodified DsiRNA, determined via an immune stimulation assay on human peripheral blood mononuclear cells.Australian Research Council (ARC) (DP 0770818
    corecore