237 research outputs found
Non-Newtonian gravity or gravity anomalies?
Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for
Trotter-Kato product formulae in Dixmier ideal
It is shown that for a certain class of the Kato functions the Trotter-Kato
product formulae converge in Dixmier ideal C 1, in topology, which is
defined by the 1,-norm. Moreover, the rate of convergence in
this topology inherits the error-bound estimate for the corresponding
operator-norm convergence. 1 since [24], [14]. Note that a subtle point of this
program is the question about the rate of convergence in the corresponding
topology. Since the limit of the Trotter-Kato product formula is a strongly
continuous semigroup, for the von Neumann-Schatten ideals this topology is the
trace-norm 1 on the trace-class ideal C 1 (H). In this case the limit
is a Gibbs semigroup [25]. For self-adjoint Gibbs semigroups the rate of
convergence was estimated for the first time in [7] and [9]. The authors
considered the case of the Gibbs-Schr{\"o}dinger semigroups. They scrutinised
in these papers a dependence of the rate of convergence for the (exponential)
Trotter formula on the smoothness of the potential in the Schr{\"o}dinger
generator. The first abstract result in this direction was due to [19]. In this
paper a general scheme of lifting the operator-norm rate convergence for the
Trotter-Kato product formulae was proposed and advocated for estimation the
rate of the trace-nor
Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos
To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods
How to detect a possible correlation from the information of a sub-system in quantum mechanical systems
A possibility to detect correlations between two quantum mechanical systems
only from the information of a subsystem is investigated. For generic cases, we
prove that there exist correlations between two quantum systems if the
time-derivative of the reduced purity is not zero. Therefore, an
experimentalist can conclude non-zero correlations between his/her system and
some environment if he/she finds the time-derivative of the reduced purity is
not zero. A quantitative estimation of a time-derivative of the reduced purity
with respect to correlations is also given. This clarifies the role of
correlations in the mechanism of decoherence in open quantum systems.Comment: 7 pages, 1 figur
Multiwavelength Study of M8.9/3B Solar Flare from AR NOAA 10960
We present a multi-wavelength analysis of a long duration white-light solar
flare (M8.9/3B) event that occurred on 4 June 2007 from NOAA AR 10960. The
flare was observed by several spaceborne instruments, namely SOHO/MDI,
Hinode/SOT, TRACE and STEREO/SECCHI. The flare was initiated near a small,
positive-polarity, satellite sunspot at the centre of the AR, surrounded by
opposite-polarity field regions. MDI images of the AR show considerable amount
of changes in a small positive-polarity sunspot of delta configuration during
the flare event. SOT/G-band (4305 A) images of the sunspot also suggest the
rapid evolution of the positive-polarity sunspot with highly twisted penumbral
filaments before the flare event, which were oriented in the counterclockwise
direction. It shows the change in orientation and also remarkable disappearance
of twisted penumbral filaments (~35-40%) and enhancement in umbral area
(~45-50%) during the decay phase of the flare. TRACE and SECCHI observations
reveal the successive activations of two helical twisted structures associated
with this sunspot, and the corresponding brightening in the chromosphere as
observed by the time-sequence images of SOT/Ca II H line (3968 A). The
secondary-helical twisted structure is found to be associated with the M8.9
flare event. The brightening starts 6-7 min prior to the flare maximum with the
appearance of secondary helical-twisted structure. The flare intensity
maximizes as this structure moves away from the AR. This twisted flux-tube
associated with the flare triggering, is found to be failed in eruption. The
location of the flare is found to coincide with the activation site of the
helical twisted structures. We conclude that the activations of successive
helical twists in the magnetic flux tubes/ropes plays a crucial role in the
energy build-up process and triggering of M-class solar flare without a CME.Comment: 22 pages, 12 figures, Accepted for Publication in Solar Physic
Streamer Wave Events Observed in Solar Cycle 23
In this paper we conduct a data survey searching for well-defined streamer
wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO)
on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle
23. As a result, 8 candidate events are found and presented here. We compare
different events and find that in most of them the driving CMEs ejecta are
characterized by a high speed and a wide angular span, and the CME-streamer
interactions occur generally along the flank of the streamer structure at an
altitude no higher than the bottom of the field of view of LASCO C2. In
addition, all front-side CMEs have accompanying flares. These common
observational features shed light on the excitation conditions of streamer wave
events.
We also conduct a further analysis on one specific streamer wave event on 5
June 2003. The heliocentric distances of 4 wave troughs/crests at various
exposure times are determined; they are then used to deduce the wave properties
like period, wavelength, and phase speeds. It is found that both the period and
wavelength increase gradually with the wave propagation along the streamer
plasma sheet, and the phase speed of the preceding wave is generally faster
than that of the trailing ones. The associated coronal seismological study
yields the radial profiles of the Alfv\'en speed and magnetic field strength in
the region surrounding the streamer plasma sheet. Both quantities show a
general declining trend with time. This is interpreted as an observational
manifestation of the recovering process of the CME-disturbed corona. It is also
found that the Alfv\'enic critical point is at about 10 R where the
flow speed, which equals the Alfv\'en speed, is 200 km s
Does the Babcock--Leighton Mechanism Operate on the Sun?
The contribution of the Babcock-Leighton mechanism to the generation of the
Sun's poloidal magnetic field is estimated from sunspot data for three solar
cycles. Comparison of the derived quantities with the A-index of the
large-scale magnetic field suggests a positive answer to the question posed in
the title of this paper.Comment: 5 pages, 2 figures, to apper in Astronomy Letter
Information Tradeoff Relations for Finite-Strength Quantum Measurements
In this paper we give a new way to quantify the folklore notion that quantum
measurements bring a disturbance to the system being measured. We consider two
observers who initially assign identical mixed-state density operators to a
two-state quantum system. The question we address is to what extent one
observer can, by measurement, increase the purity of his density operator
without affecting the purity of the other observer's. If there were no
restrictions on the first observer's measurements, then he could carry this out
trivially by measuring the initial density operator's eigenbasis. If, however,
the allowed measurements are those of finite strength---i.e., those
measurements strictly within the interior of the convex set of all
measurements---then the issue becomes significantly more complex. We find that
for a large class of such measurements the first observer's purity increases
the most precisely when there is some loss of purity for the second observer.
More generally the tradeoff between the two purities, when it exists, forms a
monotonic relation. This tradeoff has potential application to quantum state
control and feedback.Comment: 15 pages, revtex3, 3 eps figure
The mammalian centrosome and its functional significance
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease
The Hilbertian Tensor Norm and Entangled Two-Prover Games
We study tensor norms over Banach spaces and their relations to quantum
information theory, in particular their connection with two-prover games. We
consider a version of the Hilbertian tensor norm and its dual
that allow us to consider games with arbitrary output alphabet
sizes. We establish direct-product theorems and prove a generalized
Grothendieck inequality for these tensor norms. Furthermore, we investigate the
connection between the Hilbertian tensor norm and the set of quantum
probability distributions, and show two applications to quantum information
theory: firstly, we give an alternative proof of the perfect parallel
repetition theorem for entangled XOR games; and secondly, we prove a new upper
bound on the ratio between the entangled and the classical value of two-prover
games.Comment: 33 pages, some of the results have been obtained independently in
arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6
rewritten, v3: completely rewritten in order to improve readability; title
changed; references added; published versio
- …