183 research outputs found
Compositeness Effects in the Bose-Einstein Condensation
Small deviations from purely bosonic behavior of trapped atomic Bose-Einstein
condensates are investigated with the help of the quon algebra, which
interpolates between bosonic and fermionic statistics. A previously developed
formalism is employed to obtain a generalized version of the Gross-Pitaeviskii
equation. Two extreme situations are considered, the collapse of the condensate
for attractive forces and the depletion of the amount of condensed atoms with
repulsive forces. Experimental discrepancies observed in the parameters
governing the collapse and the depletion of the condensates can be accounted
for by universal fittings of the deformation parameter for each case.Comment: 17 pages, 1 tabl
Relativistic Mean Field Approximation in a Density Dependent Parametrization Model at Finite Temperature
In this work we calculate the equation of state of nuclear matter for
different proton fractions at zero and finite temperature within the Thomas
Fermi approach considering three different parameter sets: the well-known NL3
and TM1 and a density dependent parametrization proposed by Typel and Wolter.
The main differences are outlined and the consequences of imposing
beta-stability in these models are discussed.Comment: 13 pages, 10 figure
Phase transitions of hadronic to quark matter at finite T and \mu_B
The phase transition of hadronic to quark matter and the boundaries of the
mixed hadron-quark coexistence phase are studied within the two Equation of
State (EoS) model. The relativistic effective mean field approach with constant
and density dependent meson-nucleon couplings is used to describe hadronic
matter, and the MIT Bag model is adopted to describe quark matter. The
boundaries of the mixed phase for different Bag constants are obtained solving
the Gibbs equations.
We notice that the dependence on the Bag parameter of the critical
temperatures (at zero chemical potential) can be well reproduced by a fermion
ultrarelativistic quark gas model, without contribution from the hadron part.
At variance the critical chemical potentials (at zero temperature) are very
sensitive to the EoS of the hadron sector. Hence the study of the hadronic EoS
is much more relevant for the determination of the transition to the
quark-gluon-plasma at finite baryon density and low-T. Moreover in the low
temperature and finite chemical potential region no solutions of the Gibbs
conditions are existing for small Bag constant values, B < (135 MeV)^4. Isospin
effects in asymmetric matter appear relevant in the high chemical potential
regions at lower temperatures, of interest for the inner core properties of
neutron stars and for heavy ion collisions at intermediate energies.Comment: 24 pages and 16 figures (revtex4
Hybrid Stars in a Strong Magnetic Field
We study the effects of high magnetic fields on the particle population and
equation of state of hybrid stars using an extended hadronic and quark SU(3)
non-linear realization of the sigma model. In this model the degrees of freedom
change naturally from hadrons to quarks as the density and/or temperature
increases. The effects of high magnetic fields and anomalous magnetic moment
are visible in the macroscopic properties of the star, such as mass, adiabatic
index, moment of inertia, and cooling curves. Moreover, at the same time that
the magnetic fields become high enough to modify those properties, they make
the star anisotropic.Comment: Revised version with updated reference
Association between Metabolic Disorders and Cholangiocarcinoma: Impact of a Postulated Risk Factor with Rising Incidence
Introduction and objectives: The incidence of cholangiocarcinoma (CCA) has been increasing globally. Although a concomitant increase in the incidence of metabolic disorders might suggest a causal relationship, the data are scarce. We aimed to describe the prevalence of metabolic disorders in patients with CCA and report the clinical features and outcomes. Patients and Methods: Retrospective study including patients with CCA. Patients were divided into: (1) past history of diabetes or/and overweight/obesity (“metabolic disorder group”) and (2) without any of these features (“non-metabolic-disorder group”). A Cox regression model was used to determine the prognostic factors. Results: 122 patients were included. In total, 36 (29.5%) had overweight/obesity, 24 (19.7%) had diabetes, and 8 (6.6%) had both. A total of 29 (23.8%) patients had resectable disease and received upfront surgery. A total of 104 (85.2%) received chemotherapy for advanced/recurrent disease. The overall survival of the cohort was 14.3 months (95% CI: 10.1–17.3). ECOG-PS 0 (p < 0.0001), resectable disease (p = 0.018) and absence of vascular invasion (p = 0.048) were independently associated with better prognosis. The “metabolic disorder group” (n = 52) had a median survival of 15.5 months (95% CI 10.9–33.9) vs. 11.5 months (95% CI 8.4–16.5) in the “non-metabolic-disorder group” (n = 70) (HR: 1.10; 95% CI 0.62–1.94). Patients with resectable disease in the “metabolic group” had longer survival than patients in the “non-metabolic group” (43.4 months (95% CI 33.9-NR) vs. 21.8 months (95% CI 8.6–26.9); HR = 0.12, 95% CI 0.03–0.59). Conclusion: Metabolic disorders are frequent among CCA patients. Underlying metabolic comorbidities may be associated with prognosis in resectable CCA. There is a need to explore the mechanism that drives CCA carcinogenesis in a metabolic background
Chiral perturbation theory in a magnetic background - finite-temperature effects
We consider chiral perturbation theory for SU(2) at finite temperature in
a constant magnetic background . We compute the thermal mass of the pions
and the pion decay constant to leading order in chiral perturbation theory in
the presence of the magnetic field. The magnetic field gives rise to a
splitting between and as well as between
and . We also calculate the free energy and the
quark condensate to next-to-leading order in chiral perturbation theory. Both
the pion decay constants and the quark condensate are decreasing slower as a
function of temperature as compared to the case with vanishing magnetic field.
The latter result suggests that the critical temperature for the chiral
transition is larger in the presence of a constant magnetic field. The increase
of as a function of is in agreement with most model calculations but
in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig
Lattice QCD Simulations in External Background Fields
We discuss recent results and future prospects regarding the investigation,
by lattice simulations, of the non-perturbative properties of QCD and of its
phase diagram in presence of magnetic or chromomagnetic background fields.
After a brief introduction to the formulation of lattice QCD in presence of
external fields, we focus on studies regarding the effects of external fields
on chiral symmetry breaking, on its restoration at finite temperature and on
deconfinement. We conclude with a few comments regarding the effects of
electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear
in Lect. Notes Phys. "Strongly interacting matter in magnetic fields"
(Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
Heisenberg-type structures of one-dimensional quantum Hamiltonians
We construct a Heisenberg-like algebra for the one dimensional infinite
square-well potential in quantum mechanics. The ladder operators are realized
in terms of physical operators of the system as in the harmonic oscillator
algebra. These physical operators are obtained with the help of variables used
in a recently developed non commutative differential calculus. This
\textquotedblleft square-well algebra\textquotedblright is an example of an
algebra in a large class of generalized Heisenberg algebras recently
constructed. This class of algebras also contains -oscillators as a
particular case. We also discuss the physical content of this large class of
algebras.Comment: 11 pages. The title and abstract were modified and minor corrections
were made in the paper's core. Final version to appear in Phys. Rev.
- …