1,568 research outputs found
An energy scale directly related to superconductivity in the high- cuprate superconductors: Universality from the Fermi arc picture
We have performed a temperature dependent angle-resolved photoemission
spectroscopy (ARPES) study of the tri-layer high- cuprate superconductor
(HTSC) BiSrCaCuO (Bi2223), and have shown that
the \textquotedblleft effective\textquotedblright superconducting (SC) gap
defined at the end point of the Fermi arc and the (=
110 K) approximately satisfies the weak-coupling BCS-relationship
2 = 4.3. Combining this result with previous
ARPES results on single- and double-layer cuprates, we show that the
relationship between 2 = 4.3 holds for various
HTSCs. Furthermore, at , the quasi-patricle width at the end
point of the Fermi arc is found to coincide with , consistent
with the context of Planckian dissipation.Comment: 5 pages, 4 figure
Modulated photoconductivity study of charged and neutral defects in undoped amorphous silicon
Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy
Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long-term outcome has yet been established. Myocardial tenascin-C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long-term outcome in DCM. Methods and results One hundred and twenty-three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC-positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end-diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long-term outcome in DCM
Effect of electron-phonon coupling in the ARPES spectra of the tri-layer cuprate BiSrCaCuO
Angle-resolved photoemission spectroscopy using tunable low energy photons
allows us to study the quasi-particle (QP) dispersions of the inner and outer
CuO2 planes (IP and OP) separately in the tri-layer cuprate
BiSrCaCuO (Bi2223). The kink energy of the OP
band is 70 meV, as observed in various high- cuprates, while that
of the IP band is as large as 100 meV in the superconducting (SC) state. This
large kink energy is attributed to the 35 meV buckling mode plus the
large ( 60 meV) SC gap of IP. The IP band also shows a weak kink feature
at 70 meV in the SC state. The latter feature can be explained either by the 70
meV half-breathing mode or by the 35 meV buckling-phonon mode plus the
40 meV SC gap of OP if interlayer scattering of QP is involved.Comment: 5 pages, 2 figure
Energy-Dependent Enhancement of the Electron-Coupling Spectrum of the Underdoped Bi2Sr2CaCu2O8+d Superconductor
We have determined the electron-coupling spectrum of superconducting
Bi2Sr2CaCu2O8+d from high-resolution angle-resolved photoemission spectra by
two deconvolution-free robust methods. As hole concentration decreases, the
coupling spectral weight at low energies ~<15 meV shows a twofold and nearly
band-independent enhancement, while that around ~65 meV increases moderately,
and that in ~>130 meV decreases leading to a crossover of dominant coupling
excitation between them. Our results suggest the competition among multiple
screening effects, and provide important clues to the source of sufficiently
strong low-energy coupling, {\lambda}LE ~ 1, in underdoped system
Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor IrPtTe
We have studied electronic structure of triangular lattice
IrPtTe superconductor using photoemission spectroscopy and
model calculations. Ir core-level photoemission spectra show that Ir
charge modulation established in the low temperature phase of IrTe
is suppressed by Pt doping. This observation indicates that the suppression of
charge modulation is related to the emergence of superconductivity.
Valence-band photoemission spectra of IrTe suggest that the Ir charge
modulation is accompanied by Ir orbital reconstruction. Based on the
photoemission results and model calculations, we argue that the
orbitally-induced Peierls effect governs the charge and orbital instability in
the IrPtTe.Comment: 5 pages,4 figure
Pressure effects on an organic radical ferromagnet: 2,5-difluorophenyl-a-nitronyl nitroxide
Raising a transition temperature (Tc) in organic radical ferromagnets is a desire for material scientists. We investigated the pressure effects on an organic radical ferromagnet 2,5-difluorophenyl-α-nitronyl nitroxide (2,5-DFPNN), which has a ferromagnetic transition at 0.45 K. The hydrostatic pressure effects were investigated through measurements of ac magnetic susceptibility (χ) up to P=1.7GPa, heat capacity (Cp) up to P=1.5GPa, and powder x-ray diffraction up to P=4.7GPa. Furthermore, ac magnetic susceptibility under nonhydrostatic pressure was also measured in the pressure region up to 10.0 GPa. As for 2,5-DFPNN, we observed the pressure-induced enhancement of Tc as dTc/dP=7.9×10−2K/GPa [Tc(P=1.5GPa)=0.57K], while other prototypes, the β phase of p-NPNN and p−Cl−C6H4−CH=N−TEMPO show the negative pressure effects. The results for the Cp and the crystal structural analysis suggest that the magnetic dimension of the short-range order developing above Tc transforms from one dimension (a axis) to two dimensions (ac plane) under high pressure. This increase of the magnetic dimension probably promotes to increase Tc. The ferromagnetic signal of χ, however, decreases with increasing pressure, and finally disappears for P>~5.0GPa. The decrease seems to originate from the decrease of the ferromagnetic interaction along the b axis. Similar instability of organic ferromagnetic long range order against pressure has been observed for the β phase of p-NPNN and p−Cl−C6H4−CH=N−TEMPO
- …
