28,303 research outputs found
Investigations into the BFKL Mechanism with a Running QCD Coupling
We present approximations of varying degree of sophistication to the integral
equations for the (gluon) structure functions of a hadron (``the partonic flux
factor'') in a model valid in the Leading Log Approximation with a running
coupling constant. The results are all of the BFKL-type, i.e. a power in the
Bjorken variable x_B^{-\lambda} with the parameter \lambda determined from the
size \alpha_0 of the ``effective'' running coupling \bar{\alpha}\equiv
3\alpha_s/\pi= \alpha_0/\log(k_{\perp}^2) and varying depending upon the
treatment of the transverse momentum pole. We also consider the implications
for the transverse momentum (k_{\perp}) fluctuations along the emission chains
and we obtain an exponential falloff in the relevant \kappa\equiv
\log(k_{\perp}^2)-variable, i.e. an inverse power (k_{\perp}^2)^{-(2+\lambda)}
with the same parameter \lambda. This is different from the BFKL-result for a
fixed coupling, where the distributions are Gaussian in the \kappa-variable
with a width as in a Brownian motion determined by ``the length'' of the
emission chains, i.e. \log(1/x_B). The results are verified by a realistic
Monte Carlo simulation and we provide a simple physics motivation for the
change.Comment: 24 pages, 10 supplementary files, submitted to Physical Review
Resource effective control of Elymus repens
Preliminary results show that there is room for improvement within existing control methods of couch grass (Elymus repens (L.) Gould). It may be possible to reduce the number of stubble cultivations during autumn by timing the treatment, and to reduce the cultivation depth by using a goose foot cultivator (5 cm) instead of a disc cultivator (10 cm), without sacrificing couch grass control efficiency. The first year of the experiment, the use of a goose foot cultivator resulted in less nitrogen leaching than cultivation by disc. A reduced number of stubble cultivations potentially reduces nutrient loss, fuel consumption and the workload of the farmer.
Our experiments with cover crops to control couch grass in cereals has yet to prove significant effects on couch grass control, but cover crops combined with goose foot hoeing did reduce nitrogen leaching by more than a third compared to cultivation by disc. Further data is necessary to see if the system can be used to effectively control couch grass without significant yield losses. Regardless, it can reduce nitrogen leaching and potentially provide other ecosystem services, e.g. control weeds other than couch grass
The Cosmological Time Function
Let be a time oriented Lorentzian manifold and the Lorentzian
distance on . The function is the cosmological
time function of , where as usual means that is in the causal
past of . This function is called regular iff for all
and also along every past inextendible causal curve. If the
cosmological time function of a space time is regular it has
several pleasant consequences: (1) It forces to be globally hyperbolic,
(2) every point of can be connected to the initial singularity by a
rest curve (i.e., a timelike geodesic ray that maximizes the distance to the
singularity), (3) the function is a time function in the usual sense, in
particular (4) is continuous, in fact locally Lipschitz and the second
derivatives of exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth
A detailed study of quasinormal frequencies of the Kerr black hole
We compute the quasinormal frequencies of the Kerr black hole using a
continued fraction method. The continued fraction method first proposed by
Leaver is still the only known method stable and accurate for the numerical
determination of the Kerr quasinormal frequencies. We numerically obtain not
only the slowly but also the rapidly damped quasinormal frequencies and analyze
the peculiar behavior of these frequencies at the Kerr limit. We also calculate
the algebraically special frequency first identified by Chandrasekhar and
confirm that it coincide with the quasinormal frequency only at the
Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure
Plasma Melatonin Levels in Relation to the Light-Dark Cycle and Parental Background in Domestic Pigs
To study porcine melatonin secretion in a stable environment 3 daytime (10.00 – 15.00) and 3 nighttime (22.00 – 03.00) plasma samples were collected by jugular venipuncture from 15 gilts, 16 sows, 3 boars and 48 piglets (24 females and 24 males from 8 litters) and analysed for melatonin content. Nighttime melatonin concentrations were higher than daytime melatonin concentrations (p < 0.001), whereas no effect of sampling order could be discerned. The 3 adult Hampshire boars had higher melatonin concentrations during the day and the night, than the 31 adult Yorkshire females (p < 0.05). There was no clear difference between gilts and sows in plasma melatonin. The gilts from one of the litters had higher plasma melatonin concentrations than the gilts in 3 other litters (p < 0.05). Among the 48 piglets, the increase of nocturnal melatonin secretion differed between litters (p < 0.01), whereas the influence of father was not quite significant (p = 0.12). No difference in daytime melatonin concentrations between litters could be found, and there was no difference in melatonin levels between the male and female piglets. In conclusion, this study demonstrates that domestic pigs express a nocturnal increase of melatonin secretion in a standard stable environment. For some animals the amplitude of nighttime melatonin secretion was very low, although always higher than the daytime base levels. Furthermore, the levels of nighttime melatonin secretion differed between litters, which suggests a genetic background
Equilibrium spin pulsars unite neutron star populations
Many pulsars are formed with a binary companion from which they can accrete
matter. Torque exerted by accreting matter can cause the pulsar spin to
increase or decrease, and over long times, an equilibrium spin rate is
achieved. Application of accretion theory to these systems provides a probe of
the pulsar magnetic field. We compare the large number of recent torque
measurements of accreting pulsars with a high-mass companion to the standard
model for how accretion affects the pulsar spin period. We find that many long
spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10
G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the
strong-field solution is more compelling, in which case these pulsars are near
spin equilibrium. Our results provide evidence for a fundamental link between
pulsars with the slowest spin periods and strong magnetic fields around
high-mass companions and pulsars with the fastest spin periods and weak fields
around low-mass companions. The strong magnetic fields also connect our pulsars
to magnetars and strong-field isolated radio/X-ray pulsars. The strong field
and old age of our sources suggests their magnetic field penetrates into the
superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA
Dynamical simulation of spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses
Spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin
glasses are studied with and without randaom magnetic anisotropy by dynamical
Monte Carlo simulations. In isotropic case, clear evidence of a
finite-temperature chiral-glass transition is presented. While the spin
autocorrelation exhibits only an interrupted aging, the chirality
autocorrelation persists to exhibit a pronounced aging effect reminisecnt of
the one observed in the mean-field model. In anisotropic case, asymptotic
mixing of the spin and the chirality is observed in the off-equilibrium
dynamics.Comment: 4 pages including 5 figures, LaTex, to appear in Phys. Rev. Let
- …