514 research outputs found

    On the CFT duals for near-extremal black holes

    Full text link
    We consider Kerr-Newman-AdS-dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0. The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page

    Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes

    Full text link
    Motivated by recent progresses in the holographic descriptions of the Kerr and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon wave equation of a massless scalar field propagating in this background. Similar to the Kerr black hole case, this hidden symmetry is broken by the periodicity of the associated angle coordinate in the background geometry, but the results somehow testify the dual CFT description of the nonextremal RN black holes. The duality is further supported by matching of the entropies and absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur

    Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes

    Full text link
    We consider the AdS3/CFT2\mathrm{AdS}_3/\mathrm{CFT}_2 description of Reissner-Nordstr{\o}m black holes by studying their uplifted counterparts in five dimensions. Assuming a natural size of the extra dimension, the near horizon geometries for the extremal limit are exactly AdS3×S2\mathrm{AdS}_3 \times \mathrm{S}^2. We compute the scattering amplitude of a scalar field, with a mode near threshold of frequency and extra dimensional momentum, by a near extremal uplifted black hole. The absorption cross section agrees with the two point function of the CFT dual to the scalar field.Comment: reference added, improper statements corrected, 17 pages, no figure

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Uniqueness Theorem for Black Hole Space-Times with Multiple Disconnected Horizons

    Full text link
    We show uniqueness of stationary and asymptotically flat black hole space-times with multiple disconnected horizons and with two rotational Killing vector fields in the context of five-dimensional minimal supergravity (Einstein-Maxwell-Chern-Simons gravity). The novelty in this work is the introduction in the uniqueness theorem of intrinsic local charges measured near each horizon as well as the measurement of local fluxes besides the asymptotic charges that characterize a particular solution. A systematic method of defining the boundary conditions on the fields that specify a black hole space-time is given based on the study of its rod structure (domain structure). Also, an analysis of known solutions with disconnected horizons is carried out as an example of an application of this theorem.Comment: 28 pages, 5 figures. v3: Further improvements on uniqueness theorem, Lemma introduced for clarity of derivation, new quantities introduced to treat special case with zero flux, refs. added, typos fixe

    A near-NHEK/CFT correspondence

    Full text link
    We consider excitations around the recently introduced near-NHEK metric describing the near-horizon geometry of the near-extremal four-dimensional Kerr black hole. This geometry has a U(1)_L x U(1)_R isometry group which can be enhanced to a pair of commuting Virasoro algebras. We present boundary conditions for which the conserved charges of the corresponding asymptotic symmetries are well defined and non-vanishing and find the central charges c_L=12J/hbar and c_R=0 where J is the angular momentum of the black hole. Applying the Cardy formula reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 pages, v2: references updated, adde

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Searching for Signatures of Cosmic Superstrings in the CMB

    Full text link
    Because cosmic superstrings generically form junctions and gauge theoretic strings typically do not, junctions may provide a signature to distinguish between cosmic superstrings and gauge theoretic cosmic strings. In cosmic microwave background anisotropy maps, cosmic strings lead to distinctive line discontinuities. String junctions lead to junctions in these line discontinuities. In turn, edge detection algorithms such as the Canny algorithm can be used to search for signatures of strings in anisotropy maps. We apply the Canny algorithm to simulated maps which contain the effects of cosmic strings with and without string junctions. The Canny algorithm produces edge maps. To distinguish between edge maps from string simulations with and without junctions, we examine the density distribution of edges and pixels crossed by edges. We find that in string simulations without Gaussian noise (such as produced by the dominant inflationary fluctuations) our analysis of the output data from the Canny algorithm can clearly distinguish between simulations with and without string junctions. In the presence of Gaussian noise at the level expected from the current bounds on the contribution of cosmic strings to the total power spectrum of density fluctuations, the distinction between models with and without junctions is more difficult. However, by carefully analyzing the data the models can still be differentiated.Comment: 15 page

    The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes

    Full text link
    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on GμG\mu from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals compared to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions Gμ>2.5×108G\mu > 2.5 \times 10^{-8}.Comment: 10 pages, 4 figures, Appendix added, version published in JCA
    corecore