144 research outputs found
Crystallographic structure of ultrathin Fe films on Cu(100)
We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100)
using scanning tunneling microscopy. The local bcc structure provides a
straightforward explanation for their frequently reported outstanding magnetic
properties, i.e., ferromagnetic ordering in all layers with a Curie temperature
above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above
4 ML film thickness is unexpected in terms of conventional rules of thin film
growth and stresses the importance of finite thickness effects in ferromagnetic
ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
- …