47 research outputs found

    Fibrinogen storage disease without hypofibrinogenemia associated with estrogen therapy

    Get PDF
    BACKGROUND: Cytoplasmic inclusion bodies within hepatocytes may have different etiologies, including the Endoplasmic Reticulum Storage Diseases (ERSDs). ERSD is a pathological condition characterized by abnormal accumulation of proteins destined for secretion in the endoplasmic reticulum of hepatocytes; it may be congenital (primary) or acquired (secondary). Fibrinogen storage disease is a form of ERSD. CASE PRESENTATION: We present a case of fibrinogen storage disease secondary to estrogen replacement therapy. Its causal relationship to the drug is shown by histological, immunohistochemical and ultrastructural studies of paired liver biopsies obtained during and after the drug therapy. CONCLUSION: The liver biopsies of patients with idiopathic liver enzyme abnormalities should be carefully evaluated for cytoplasmic inclusion bodies and, although rare, fibrinogen deposits

    Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia.</p> <p>Methods</p> <p>The retina transcriptome (22,523 genes and transcript variants) was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point.</p> <p>Results</p> <p>Transcriptomic alterations in response to diabetes (1376 probes) were clustered according to insulin responsiveness. More than half (57%) of diabetes-induced mRNA changes (789 probes) observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514) were only partially normalized. A small set of genes (5%, 65 probes) was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf) was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression.</p> <p>Conclusions</p> <p>These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in euglycemic diabetic rats. Gene expression changes not rescued or prevented by insulin treatment may be critical to the pathogenesis of diabetic retinopathy, as it occurs in diabetic patients receiving insulin replacement, and are prototypical of metabolic memory.</p

    A Call to Action for Bioengineers and Dental Professionals: Directives for the Future of TMJ Bioengineering

    Full text link

    Structure determination of the indium-induced Si(111)-(4x1) reconstruction by surface X-ray diffraction

    No full text
    A detailed structural model for the indium-induced Si(111)−(4×1) surface reconstruction has been determined by analyzing an extensive set of x-ray-diffraction data recorded with monochromatic (ħω=9.1keV) synchrotron radiation. The reconstruction is quasi-one-dimensional. The main features in the structure are chains of silicon atoms alternating with zigzag chains of indium atoms on top of an essentially unperturbed silicon lattice. The indium coverage corresponds to one monolayer. The structural model consistently explains all previously published experimental data
    corecore