206 research outputs found

    Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer.

    Full text link

    Tuberculosis in Dr Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis

    Get PDF
    ‘Dr Granville's mummy’ was described to the Royal Society of London in 1825 and was the first ancient Egyptian mummy to be subjected to a scientific autopsy. The remains are those of a woman, Irtyersenu, aged about 50, from the necropolis of Thebes and dated to about 600 BC. Augustus Bozzi Granville (1783–1872), an eminent physician and obstetrician, described many organs still in situ and attributed the cause of death to a tumour of the ovary. However, subsequent histological investigations indicate that the tumour is a benign cystadenoma. Histology of the lungs demonstrated a potentially fatal pulmonary exudate and earlier studies attempted to associate this with particular disease conditions. Palaeopathology and ancient DNA analyses show that tuberculosis was widespread in ancient Egypt, so a systematic search for tuberculosis was made, using specific DNA and lipid biomarker analyses. Clear evidence for Mycobacterium tuberculosis complex DNA was obtained in lung tissue and gall bladder samples, based on nested PCR of the IS6110 locus. Lung and femurs were positive for specific M. tuberculosis complex cell-wall mycolic acids, demonstrated by high-performance liquid chromatography of pyrenebutyric acid–pentafluorobenzyl mycolates. Therefore, tuberculosis is likely to have been the major cause of death of Irtyersenu

    Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults

    Get PDF
    Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control. was highly enriched in diabetic compared to non-diabetic persons (P = 0.02) and positively correlated with plasma glucose (P = 0.04).The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota

    Mining of unexplored habitats for novel chitinases—chiA as a helper gene proxy in metagenomics

    Get PDF
    The main objective of this study was to assess the abundance and diversity of chitin-degrading microbial communities in ten terrestrial and aquatic habitats in order to provide guidance to the subsequent exploration of such environments for novel chitinolytic enzymes. A combined protocol which encompassed (1) classical overall enzymatic assays, (2) chiA gene abundance measurement by qPCR, (3) chiA gene pyrosequencing, and (4) chiA gene-based PCR-DGGE was used. The chiA gene pyrosequencing is unprecedented, as it is the first massive parallel sequencing of this gene. The data obtained showed the existence across habitats of core bacterial communities responsible for chitin assimilation irrespective of ecosystem origin. Conversely, there were habitat-specific differences. In addition, a suite of sequences were obtained that are as yet unregistered in the chitinase database. In terms of chiA gene abundance and diversity, typical low-abundance/diversity versus high-abundance/diversity habitats was distinguished. From the combined data, we selected chitin-amended agricultural soil, the rhizosphere of the Arctic plant Oxyria digyna and the freshwater sponge Ephydatia fluviatilis as the most promising habitats for subsequent bioexploration. Thus, the screening strategy used is proposed as a guide for further metagenomics-based exploration of the selected habitats

    Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide

    Get PDF
    Nitric oxide (NO) is a small gas molecule derived from at least three isoforms of the enzyme termed nitric oxide synthase (NOS). More than 15 years ago, the question of feedback regulation of NOS activity and expression by its own product was raised. Since then, a number of trials have verified the existence of negative feedback loop both in vitro and in vivo. NO, whether released from exogenous donors or applied in authentic NO solution, is able to inhibit NOS activity and also intervenes in NOS expression processes by its effect on transcriptional nuclear factor NF-κB. The existence of negative feedback regulation of NOS may provide a powerful tool for experimental and clinical use, especially in inflammation, when massive NOS expression may be detrimental

    Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) has been used to study microbial communities in a variety of environmental samples. However, these protocols must be optimized prior to their application in order to enhance the quality and accuracy of downstream analyses. In this study, the relative efficacy of four commercial DNA extraction kits (Mobio Ultra Clean<sup>® </sup>Fecal DNA Isolation Kit, M; QIAamp<sup>® </sup>DNA Stool Mini Kit, Q; FastDNA<sup>® </sup>SPIN Kit, FSp; FastDNA<sup>® </sup>SPIN Kit for Soil, FSo) were evaluated. Further, PCR-DGGE technique was also assessed for its feasibility in detecting differences in human intestinal bacterial fingerprint profiles.</p> <p>Method</p> <p>Total DNA was extracted from varying weights of human fecal specimens using four different kits, followed by PCR amplification of bacterial 16S rRNA genes, and DGGE separation of the amplicons.</p> <p>Results</p> <p>Regardless of kit, maximum DNA yield was obtained using 10 to 50 mg (wet wt) of fecal specimens and similar DGGE profiles were obtained. However, kits FSp and FSo extracted significantly larger amounts of DNA per g dry fecal specimens and produced more bands on their DGGE profiles than kits M and Q due to their use of bead-containing lysing matrix and vigorous shaking step. DGGE of 16S rRNA gene PCR products was suitable for capturing the profiles of human intestinal microbial community and enabled rapid comparative assessment of inter- and intra-subject differences.</p> <p>Conclusion</p> <p>We conclude that extraction kits that incorporated bead-containing lysing matrix and vigorous shaking produced high quality DNA from human fecal specimens (10 to 50 mg, wet wt) that can be resolved as bacterial community fingerprints using PCR-DGGE technique. Subsequently, PCR-DGGE technique can be applied for studying variations in human intestinal microbial communities.</p
    corecore