25 research outputs found

    Field application of Clethodim herbicide combined with Trichoderma spp. for controlling weeds,root knot nematodes and Rhizoctonia root rot disease in two faba bean cultivars

    No full text
    Clethodim herbicide (Cle) and three Trichoderma strains (Tri) were applied either alone or in combination (Cle + Tri) for controlling weeds, root knot nematodes (Meloidogyne arenaria) and Rhizoctonia root rot disease (Rhizoctonia solani) as well as for evaluating their effects on total microbial count in the rhizosphere and the number of Rhizobium nodules on roots in two faba bean cultivars cultivated in naturally heavily infested fields. The evaluated characters were very similar for the two tested cultivars (Nubariya 1 and Sakha 3). Treatment with Cle alone highly reduced the fresh and dry matter of tested weeds (Amaranthus viridis, Cynodon dactylon and Cenchrus ciliaris), followed by Cle + Tri and Tri alone. Cle + Tri highly reduced nematode parameters viz. numbers of J2 in soil or roots, females, eggs, galls and egg-masses when compared with each treatment alone. Tri alone caused a great decrease in Rhizoctonia root rot infection, followed by Cle + Tri and Cle alone. Total microbial count and Rhizobium nodules were affected only with Cle treatment. Plant growth parameters (shoot length, shoot fresh and dry weight and numbers of branches and leaves) and yield parameters (fresh pod and dry weight, seed number per pod, seed weight and ash pod weight of plant) were greatly improved for Cle + Tri treatments when compared with either Tri or Cle alone

    Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean

    No full text
    Abstract Background Damping-off and root rot/wilt diseases caused by the soil-borne fungi Fusarium solani and F. oxysporum are a serious problem of dry bean productions in Egypt. This study examines the potential of controlling these diseases biologically by using three Trichoderma isolates, compatible with the fungicide thiophanatemethyl, i.e., T. harzianum, T. viride, and T. virens. Soil application with inoculants containing these isolates employed either alone or in combination with seed coating with thiophanate-methyl was applied. Results Under greenhouse and field conditions, all treatments significantly reduced the incidence of damping-off and root rot/wilt diseases and increased the percentage of survival plants. These treatments increased vegetative growth parameters and yield components of the survival dry bean plants compared with untreated control. Soil application with Trichoderma isolates combined with thiophanate-methyl seed treatments was more effective than using both of them individually. Meanwhile, T. virens + thiophanate-methyl was the most effective treatment. The tested treatments stimulated systemic defense responses in dry bean plants by activating defense enzymes including peroxidase, polyphenoloxidase, and chitinase. Conclusions Based on the obtained results, compatible isolates of Trichoderma spp. as soil treatment combined with thiophanate-methyl as seed treatment may have potential to develop a new biofungicide for integrated management of damping-off and root rot/wilt diseases in dry bean

    Effects of Co-Solvent on the Morphology, Physicochemical Properties, and Performance of PVDF Electrospun Membranes in Comparison to Flat-Sheet Membranes

    No full text
    Poly(vinylidene fluoride) (PVDF) membranes were fabricated using two different methods: the electro-spinning technique and the phase inversion process. The effect of a DMF/acetone solvent composition on the quality of the electrospun fibers of the PVDF membrane was investigated. The prepared PVDF membranes have been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and contact angle. Uniform fibrous membranes with fiber diameters ranging mainly from 6 μm to 1.5 μm were formed from 16% (w/w) PVDF solutions in 50/50 (w/w) DMF/acetone at 30 kV voltage and 0.3 mL/h flow rate. The effect of surface morphology and hydrophilicity on anti-fouling potential was also studied and compared with flat-sheet membranes. It was found that the spun fibrous membranes exhibited the best hydrophilicity and antifouling properties with an average pure water permeability up to 400 L/m2/h, higher than that of the flat-sheet membranes, which exhibited 200 L/m2/h. Performance evaluation of the prepared PVDF membranes (water flux and organic matter retention) has been done through the use of a dead-end apparatus, where the results demonstrated the efficiency of electrospun membrane over the conventionally prepared flat-sheet membrane for utilization as a pretreatment stage of ultrafiltration and microfiltration (MF/UF), before reverse osmosis (RO) in the desalination plant
    corecore