43,701 research outputs found
Birkhoff Theorem and Matter
Birkhoff's theorem for spherically symmetric vacuum spacetimes is a key
theorem in studying local systems in general relativity theory. However
realistic local systems are only approximately spherically symmetric and only
approximately vacuum. In a previous paper, we showed the theorem remains
approximately true in an approximately spherically symmetric vacuum space time.
In this paper we prove the converse case: the theorem remains approximately
true in a spherically symmetric, approximately vacuum space time.Comment: 7 pages, Revtex
Sfermion Pair Production at Colliders
We discuss pair production of stops, sbottoms, staus and tau--sneutrinos at a
collider. We present the formulae for the production cross
sections and perform a detailed numerical analysis within the Minimal
Supersymmetric Standard Model. In particular, we consider sfermion production
near and .Comment: 21 pages, Latex, uses Revtex (included), 8 figures (included as
PS-files
Semiclassical collision theory. Multidimensional Bessel uniform approximation
A multidimensional Bessel uniform approximation for the semiclassical S matrix is derived for the case of four real stationary phase points. A formula is also developed for the particular case when four stationary phase points may be considered to be well separated in pairs. The latter equation is then used in the treatment of two real and two complex stationary phase points
Numerical evaluation of one-loop QCD amplitudes
We present the publicly available program NGluon allowing the numerical
evaluation of primitive amplitudes at one-loop order in massless QCD. The
program allows the computation of one-loop amplitudes for an arbitrary number
of gluons. The focus of the present article is the extension to one-loop
amplitudes including an arbitrary number of massless quark pairs. We discuss in
detail the algorithmic differences to the pure gluonic case and present cross
checks to validate our implementation. The numerical accuracy is investigated
in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe
Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction
We measure the Hall conductivity of a two-dimensional electron gas formed at
a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron
resonance frequency by employing a highly sensitive Faraday rotation method
coupled with electrical gating of the sample to change the electron density. We
observe clear plateau-and step-like features in the Faraday rotation angle vs.
electron density and magnetic field (Landau-level filling factor), which are
the high frequency manifestation of quantum Hall plateaus - a signature of
topologically protected edge states. The results are compared to a recent
dynamical scaling theory.Comment: 18 pages, 3 figure
Dijet Production at Large Rapidity Intervals
We examine dijet production at large rapidity intervals at Tevatron energies,
by using the theory of Lipatov and collaborators which resums the leading
powers of the rapidity interval. We analyze the growth of the Mueller-Navelet
-factor in this context and find it to be negligible. However, we do find a
considerable enhancement of jet production at large transverse momenta. In
addition, we show that the correlation in transverse momentum and azimuthal
angle of the tagging jets fades away as the rapidity interval is increased.Comment: 12 pages, preprint DESY 93-139, SCIPP 93/3
Semiclassical collision theory. Application of multidimensional uniform approximations to the atom-rigid-rotor system
The multidimensional Bessel and Airy uniform approximations developed earlier in this series for the semiclassical S matrix are applied to the atom rigid−rotor system. The need is shown for (a) using a geoemetrical criterion for determining whether a stationary phase point (s.p.pt) is a maximum, minimum, or saddle point; (b) choosing a proper quadrilateral configuration of the s.p.pts. with the phases as nearly equal as possible; and (c) choosing a unit cell to favor near−separation of variables. (a) and (b) apply both to the Airy and to the Bessel uniform approximations, and (c) to the Bessel. The use of a contour plot both to understand and to facilitate the search in new cases is noted. The case of real and complex−valued stationary phase points is also considered, and the Bessel uniform−in−pairs approximation is applied. Comparison is made with exact quantum results. As in the one−dimensional case, the Bessel is an improvement over the Airy for ’’k = 0’’ transitions, while for other transitions they give similar results. Comparison in accuracy with the results of the integral method is also given. As a whole, the agreement can be considered to be reasonable. The improvement of the present over various more approximate results is shown
Local freedom in the gravitational field
In a cosmological context, the electric and magnetic parts of the Weyl
tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are
not pointwise determined by the matter fields. By performing a complete
covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that
the parts of the derivative of the curvature which are locally free (i.e. not
pointwise determined by the matter via the Bianchi identities) are exactly the
symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with
their spatial curls. These parts of the derivatives are shown to be crucial for
the existence of gravitational waves.Comment: New results on gravitational waves included; new references added;
revised version (IOP style) to appear Class. Quantum Gra
Neutrino Oscillations Induced by Gravitational Recoil Effects
Quantum gravitational fluctuations of the space-time background, described by
virtual D branes, may induce neutrino oscillations if a tiny violation of the
Lorentz invariance (or a violation of the equivalence principle) is imposed. In
this framework, the oscillation length of massless neutrinos turns out to be
proportional to M/E^2, where E is the neutrino energy and M is the mass scale
characterizing the topological fluctuations in the vacuum. Such a functional
dependence on the energy is the same obtained in the framework of loop quantum
gravity.Comment: 5 pages, LaTex fil
Estimating the active space of male koala bellows: propagation of cues to size and identity in a Eucalyptus forest
Examining how increasing distance affects the information content of vocal signals is fundamental for determining the active space of a given species’ vocal communication system. In the current study we played back male koala bellows in a Eucalyptus forest to determine the extent that individual classification of male koala bellows becomes less accurate over distance, and also to quantify how individually distinctive acoustic features of bellows and size-related information degrade over distance. Our results show that the formant frequencies of bellows derived from Linear Predictive Coding can be used to classify calls to male koalas over distances of 1–50 m. Further analysis revealed that the upper formant frequencies and formant frequency spacing were the most stable acoustic features of male bellows as they propagated through the Eucalyptus canopy. Taken together these findings suggest that koalas could recognise known individuals at distances of up to 50 m and indicate that they should attend to variation in the upper formant frequencies and formant frequency spacing when assessing the identity of callers. Furthermore, since the formant frequency spacing is also a cue to male body size in this species and its variation over distance remained very low compared to documented inter-individual variation, we suggest that male koalas would still be reliably classified as small, medium or large by receivers at distances of up to 150 m
- …
