5,373 research outputs found

    The Write Approach to Mathematics or How I Found the Middle Way

    Get PDF
    Revising a course is a multifaceted process. Often, reform efforts are focused on a particular aspect, that of inquiry-based collaborative learning. This article discusses the implementation of another aspect of the reform of a course for pre-service elementary teachers: the use of journals and writing exercises for evaluation and assessment. The evolution of this particular reform is traced, with emphasis on the reactions of students and faculty, the issues raised by these reactions, and the solution and resolution attained by the author is outlined

    Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes

    Get PDF
    The recently developed structure model that uses the generator coordinate method to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes (3DAMP+GCM), is applied in a systematic study of ground states and low-energy collective states in the even-even magnesium isotopes 20−40^{20-40}Mg. Results obtained using a relativistic point-coupling nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent ή\delta-interaction in the pairing channel, are compared to data and with previous axial 1DAMP+GCM calculations, both with a relativistic density functional and the non-relativistic Gogny force. The effects of the inclusion of triaxial degrees of freedom on the low-energy spectra and E2 transitions of magnesium isotopes are examined.Comment: 28 pages, 11 figures and 1 tabl

    Perturbative HFB model for many-body pairing correlations

    Get PDF
    We develop a perturbative model to treat the off-diagonal components in the Hartree-Fock-Bogoliubov (HFB) transformation matrix, which are neglected in the BCS approximation. Applying the perturbative model to a weakly bound nucleus 84^{84}Ni, it is shown that the perturbative approach reproduces well the solutions of the HFB method both for the quasi-particle energies and the radial dependence of quasi-particle wave functions. We find that the non-resonant part of the continuum single-particle state can acquire an appreciable occupation probability when there exists a weakly bound state close to the Fermi surface. This result originates from the strong coupling between the continuum particle state and the weakly bound state, and is absent in the BCS approximation. The limitation of the BCS approximation is pointed out in comparison with the HFB and the present perturbative model.Comment: 6 pages, 5 eps figure

    Structure properties of 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm fission fragments: mean field analysis with the Gogny force

    Full text link
    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007

    Nuclear fission in covariant density functional theory

    Full text link
    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.Comment: 6 pages, 4 figures, will be published in European Physical Journal, Web of Conferences, (Proceedings of Fifth International Workshop on Nuclear fission and Fission-Product Spectroscopy

    Static observables of relativistic three-fermion systems with instantaneous interactions

    Full text link
    We show that static properties like the charge radius and the magnetic moment of relativistic three-fermion bound states with instantaneous interactions can be formulated as expectation values with respect to intrinsically defined wavefunctions. The resulting operators can be given a natural physical interpretation in accordance with relativistic covariance. We also indicate how the formalism may be generalized to arbitrary moments. The method is applied to the computation of static baryon properties with numerical results for the nucleon charge radii and the baryon octet magnetic moments. In addition we make predictions for the magnetic moments of some selected nucleon resonances and discuss the decomposition of the nucleon magnetic moments in contributions of spin and angular momentum, as well as the evolution of these contributions with decreasing quark mass.Comment: 13 pages, including 2 figures and 3 tables, submitted to Eur.Phys.J.

    Pairing correlations in nuclei on the neutron-drip line

    Get PDF
    Paring correlations in weakly bound nuclei on the edge of neutron drip line is studied by using a three-body model. A density-dependent contact interaction is employed to calculate the ground state of halo nuclei 6^{6}He and 11^{11}Li, as well as a skin nucleus 24^{24}O. Dipole excitations in these nuclei are also studied within the same model. We point out that the di-neutron type correlation plays a dominant role in the halo nuclei 6^{6}He and 11^{11}Li having the coupled spin of the two neutrons SS=0, while the correlation similar to the BCS type is important in 24^{24}O. Contributions of the spin SS=1 and S=0 configurations are separately discussed in the low energy dipole excitations.Comment: 6 pages, 12 eps figure

    Pairing in the Framework of the Unitary Correlation Operator Method (UCOM): Hartree-Fock-Bogoliubov Calculations

    Full text link
    In this first in a series of articles, we apply effective interactions derived by the Unitary Correlation Operator Method (UCOM) to the description of open-shell nuclei, using a self-consistent Hartree-Fock-Bogoliubov framework to account for pairing correlations. To disentangle the particle-hole and particle-particle channels and assess the pairing properties of \VUCOM, we consider hybrid calculations using the phenomenological Gogny D1S interaction to derive the particle-hole mean field. In the main part of this article, we perform calculations of the tin isotopic chain using \VUCOM in both the particle-hole and particle-particle channels. We study the interplay of both channels, and discuss the impact of non-central and non-local terms in realistic interactions as well as the frequently used restriction of pairing interactions to the 1S0{}^1S_0 partial wave. The treatment of the center-of-mass motion and its effect on theoretical pairing gaps is assessed independently of the used interactions.Comment: 14 pages, 10 figures, to appear in Phys. Rev. C, title modified accordingl

    Nuclear Excitations Described by Randomly Selected Multiple Slater Determinants

    Get PDF
    We propose a new stochastic method to describe low-lying excited states of finite nuclei superposing multiple Slater determinants without assuming generator coordinates a priori. We examine accuracy of our method by using simple BKN interaction.Comment: Talk at International Symposium on Correlation Dynamics in Nuclei, Tokyo, Japan, 31 Jan.-- 4 Feb. 200
    • 

    corecore