20 research outputs found

    Ficaria verna Huds. extracts and their β-cyclodextrin supramolecular systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining new pharmaceutical materials with enhanced properties by using natural compounds and environment-friendly methods is a continuous goal for scientists. <it>Ficaria verna </it>Huds. is a widespread perennial plant with applications in the treat of haemorrhoids and to cure piles; it has also anti-inflammatory, astringent, and antibiotic properties. The goal of the present study is the obtaining and characterization of new <it>F. verna </it>extract/β-cyclodextrin complexes by using only natural compounds, solvents, and environment-friendly methods in order to increase the quality and acceptability versus toxicity indicator. Thus, the flavonoid content (as quercetin) of <it>Ficaria verna </it>Huds. flowers and leaves from the West side of Romania was determined and correlated with their antioxidant activity. Further, the possibility of obtaining β-cyclodextrin supramolecular systems was studied.</p> <p>Results</p> <p><it>F. verna </it>flowers and leaves extracts were obtained by semi-continuous solid-liquid extraction. The raw concentrated extract was spectrophotometrically analyzed in order to quantify the flavonoids from plant parts and to evaluate the antioxidant activity of these extracts. The <it>F. verna </it>extracts were used for obtaining β-cyclodextrin complexes; these were analyzed by scanning electron microscopy and Karl Fischer water titration; spectrophotometry was used in order to quantifying the flavonoids and evaluates the antioxidant activity. A higher concentration of flavonoids of 0.5% was determined in complexes obtained by crystallisation method, while only a half of this value was calculated for kneading method. The antioxidant activity of these complexes was correlated with the flavonoid content and this parameter reveals possible controlled release properties.</p> <p>Conclusions</p> <p>The flavonoid content of <it>F. verna </it>Huds. from the West side of Romania (Banat county) is approximately the same in flowers and leaves, being situated at a medium value among other studies. β-Cyclodextrin complexes of <it>F. verna </it>extracts are obtained with lower yields by crystallisation than kneading methods, but the flavonoids (as quercetin) are better encapsulated in the first case most probably due to the possibility to attain the <it>host</it>-<it>guest </it>equilibrium in the slower crystallisation process. <it>F. verna </it>extracts and their β-cyclodextrin complexes have antioxidant activity even at very low concentrations and could be used in proper and valuable pharmaceutical formulations with enhanced bioactivity.</p

    From Romanian apple to juice and apple cider – a comparative study and physicochemical analyses

    Get PDF
    Romania has a long tradition in the production of high quality apples, which can be processed into a large variety of soft drinks. The aim of the study was to establish the physicochemical characteristics of some apple varieties growing in Romania, together with their corresponding juice and cider, regarding polyphenols, antioxidant capacity, pH and refractive index. Some samples of apple, apple juices and corresponding ciders were analysed using Folin Ciocalteu method for total polyphenols content (TPC) and CUPRAC method to evaluate the antioxidant capacity (TAC). For all cases, moisture content, sugars (like °Brix), pH and alcoholic content were recorded. Compared to fresh apples, a significant decrease of the antioxidant capacity measured by CUPRAC assay and TPC for cider was observed. Also, statistically significant differences between samples were found. During processing of apples to juice and cider, a difference in the antioxidant capacity of the final product was noticed. Our study shows that processing apples to juice and further to cider has the effect of drastically decreasing the TAC to 2-6% of the initial apples TAC, depending on the apple variety

    Composition and Efficacy of a Natural Phytotherapeutic Blend against Nosemosis in Honey Bees

    Get PDF
    Honey bees are essential to sustaining ecosystems, contributing to the stability of biodiversity through pollination. Today, it is known that the failure of pollination leads irremediably to the loss of plant cultures and, as a consequence, inducing food security issues. Bees can be affected by various factors, one of these being Nosema spp. which are protozoans specifically affecting adult honey bees and a threat to bee populations around the world. The composition of the phytotherapeutic product (Protofil®) for treating nosemosis was analyzed from a biochemical point of view. The most concentrated soluble parts in the phytotherapeutic association were the flavonoids, most frequently rutin, but quercetin was also detected. Additionally, the main volatile compounds identified were eucalyptol (1.8-cineol) and chavicol-methyl-ether. To evaluate the samples’ similarity–dissimilarity, the PCA multivariate statistical analysis, of the gas-chromatographic data (centered relative percentages of the volatile compounds), was applied. Statistical analysis revealed a significant similarity of Protofil® with the Achillea millefolium (Yarrow) samples and more limited with Thymus vulgaris (Thyme) and Ocimum basilicum (Basil), and, respectively, a meaningful dissimilarity with Taraxacum officinale (Dandelion). The results have shown a high and beneficial active compounds concentration in the analyzed herbs. High similarity with investigated product recommending the Protofil®, as the treatment compatible with producing organic honey

    Titanocene / cyclodextrin supramolecular systems: a theoretical approach

    No full text
    Abstract Background Recently, various metallocenes were synthesized and analyzed by biological activity point of view (such as antiproliferative properties): ruthenocenes, cobaltoceniums, titanocenes, zirconocenes, vanadocenes, niobocenes, molibdocenes etc. Two main disadvantages of metallocenes are the poor hydrosolubility and the hydrolytic instability. These problems could be resolved in two ways: synthetically modifying the structure or finding new formulations with enhanced properties. The aqueous solubility of metallocenes with cytostatic activities could be enhanced by molecular encapsulation in cyclodextrins, as well as the hydrolytic instability of these compounds could be reduced. Results This study presents a theoretical approach on the nanoencapsulation of a series of titanocenes with cytotoxic activity in α-, β-, and γ-cyclodextrin. The HyperChem 5.11 package was used for building and molecular modelling of titanocene and cyclodextrin structures, as well as for titanocene/cyclodextrin complex optimization. For titanocene/cyclodextrin complex optimization experiments, the titanocene and cyclodextrin structures in minimal energy conformations were set up at various distances and positions between molecules (molecular mechanics functionality, MM+). The best interaction between titanocene structures and cyclodextrins was obtained in the case of β- and γ-cyclodextrin, having the hydrophobic moieties oriented to the secondary face of cyclodextrin. The hydrophobicity of titanocenes (logP) correlate with the titanocene-cyclodextrin interaction parameters, especially with the titanocene-cyclodextrin interaction energy; the compatible geometry and the interaction energy denote that the titanocene/β- and γ-cyclodextrin complex can be achieved. Valuable quantitative structure-activity relationships (QSARs) were also obtained in the titanocene class by using the same logP as the main parameter for the in vitro cytotoxic activity against HeLa, K562, and Fem-x cell lines. Conclusions According to our theoretical study, the titanocene/cyclodextrin inclusion compounds can be obtained (high interaction energy; the encapsulation is energetically favourable). Further, the most hydrophobic compounds are better encapsulated in β- and γ-cyclodextrin molecules and are more stable (from energetically point of view) in comparison with α-cyclodextrin case. This study suggests that the titanocene / β- and γ-cyclodextrin complexes (or synthetically modified cyclodextrins with higher water solubility) could be experimentally synthesized and could have enhanced cytotoxic activity and even lower toxicity.</p

    Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    No full text
    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated

    Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin

    No full text
    The thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) as well as its β-cyclodextrin (β-CD) complexation ability has been verified for the first time. The main omega-3 fatty acids, EPA and DHA, were significantly degraded, even at 50 °C. Their relative concentrations decrease from 6.1% for EPA and 4.1% for DHA to 1.7% and 1.5% after degradation at 150 °C, respectively. On the other hand, the relative concentrations of monounsaturated and saturated fatty acids remained constant or slightly increased by a few percent after degradation (e.g., from 10.7% to 12.9% for palmitic acid). Co-crystallization of ASO with β-CD at a host–guest ratio of 1:1 and 3:1 from an ethanol–water mixture and kneading methods has been used for the preparation of β-CD/ASO complexes. The analysis of the complexes by thermogravimetry, differential scanning calorimetry (DSC), and Karl Fischer titration (KFT) as well as the decrease of the “strongly-retained” water content confirm the formation of the inclusion compound. Furthermore, the DSC parameters correlate well with the KFT kinetic data for β-CD/ASO complexes

    Discrimination of β-cyclodextrin/hazelnut (Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis

    No full text
    The goal of the study was the discrimination of β-cyclodextrin (β-CD)/hazelnut (Corylus avellana L.) oil/antioxidant ternary complexes through Fourier-transform infrared spectroscopy coupled with principal component analysis (FTIR–PCA). These innovative complexes combine the characteristics of the three components and improve the properties of the resulting material such as the onsite protection against oxidative degradation of hazelnut oil unsaturated fatty acid glycerides. Also, the apparent water solubility and bioaccessibility of the hazelnut oil components and antioxidants can be increased, as well as the controlled release of bioactive compounds (fatty acid glycerides and antioxidant flavonoids, namely hesperidin, naringin, rutin, and silymarin). The appropriate method for obtaining the ternary complexes was kneading the components at various molar ratios (1:1:1 and 3:1:1 for β-CD hydrate:hazelnut oil (average molar mass of 900 g/mol):flavonoid). The recovering yields of the ternary complexes were in the range of 51.5–85.3% and were generally higher for the 3:1:1 samples. The thermal stability was evaluated by thermogravimetry and differential scanning calorimetry. Discrimination of the ternary complexes was easily performed through the FTIR–PCA coupled method, especially based on the stretching vibrations of CO groups in flavonoids and/or CO/CC groups in the ternary complexes at 1014.6 (± 3.8) and 1023.2 (± 1.1) cm−1 along the second PCA component (PC2), respectively. The wavenumbers were more appropriate for discrimination than the corresponding intensities of the specific FTIR bands. On the other hand, ternary complexes were clearly distinguishable from the starting β-CD hydrate along the first component (PC1) by all FTIR band intensities and along PC2 by the wavenumber of the asymmetric stretching vibrations of the CH groups at 2922.9 (± 0.4) cm−1 for ternary complexes and 2924.8 (± 1.4) cm−1 for β-CD hydrate. The first two PCA components explain 70.38% from the variance of the FTIR data (from a total number of 26 variables). Other valuable classifications were obtained for the antioxidant flavonoids, with a high similarity for hesperidin and naringin, according to FTIR–PCA, as well as for ternary complexes depending on molar ratios. The FTIR–PCA coupled technique is a fast, nondestructive and cheap method for the evaluation of quality and similarity/characteristics of these new types of cyclodextrin-based ternary complexes having enhanced properties and stability

    Antioxidant Activity and Discrimination of Organic Apples (Malus domestica Borkh.) Cultivated in the Western Region of Romania: A DPPH· Kinetics–PCA Approach

    No full text
    Apple (Malus domestica Borkh.) is one of the most used fruit for beverages in Romania. The goal of the study was to evaluate the antioxidant activity and discrimination of various parts of organic and non-organic apple varieties cultivated in the western region of Romania using the DPPH kinetics–PCA (principal component analysis) approach. Organic and non-organic apples were subjected to solid–liquid ethanol extraction. Core and shell extracts were mixed with DPPH· and spectrophotometrically monitored at 517 nm. Antioxidant activity and mean DPPH· reaction rate at various time ranges reveal significant differences between organic and non-organic samples, as well as apple parts. Organic core and shell extracts had higher antioxidant activities than the corresponding non-organic samples (74.5–96.9% and 61.9–97.2%, respectively, 23.5–94.3% and 59.5–95.5%). Significant differences were observed for the DPPH· reaction rate for the first ½ min, especially in the presence of organic core extracts (3.7–4.8 μM/s). The organic samples were well discriminated by DPPH· kinetics–PCA, the most important variables being the DPPH· reaction rate for the first time range. This is the first DPPH· kinetics–PCA approach applied for discriminating between organic and non-organic fruits and can be useful for evaluating the quality of such type of fruits
    corecore