317 research outputs found

    Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts

    Full text link
    Transient X-ray binaries produce major outbursts in which the X-ray flux can increase over the quiescent level by factors as large as 10710^7. The low-mass X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such major outbursts in June and October 2015, respectively. We present here observations at energies above hundreds of GeV with the VERITAS observatory taken during some of the brightest X-ray activity ever observed from these systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux limits derived from these observations on the gamma-ray flux above 200 GeV of F <4.4×10−12< 4.4\times 10^{-12} cm−2^{-2} s−1^{-1} correspond to a tiny fraction (about 10−610^{-6}) of the Eddington luminosity of the system, in stark contrast to that seen in the X-ray band. No gamma rays have been detected during observations of 4U 0115+634 in the period of major X-ray activity in October 2015. The flux upper limit derived from our observations is F <2.1×10−12< 2.1\times 10^{-12} cm−2^{-2} s−1^{-1} for gamma rays above 300 GeV, setting an upper limit on the ratio of gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa

    Gamma-ray Observations Under Bright Moonlight with VERITAS

    Full text link
    Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727+502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations

    Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS

    Full text link
    Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, USA, is primarily utilized for gamma-ray astronomy, but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 ±\pm 40stat_{stat} ±\pm 140syst_{syst} GeV.Comment: 17 pages, 2 figures, accepted for publication in PR

    Dark Matter Constraints from a Joint Analysis of Dwarf Spheroidal Galaxy Observations with VERITAS

    Full text link
    We present constraints on the annihilation cross section of WIMP dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of ∼\sim230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35×10−23cm3s−11.35\times 10^{-23} {\mathrm{ cm^3s^{-1}}} at 1 TeV for the bottom quark (bbˉb\bar{b}) final state, 2.85×10−24cm3s−12.85\times 10^{-24}{\mathrm{ cm^3s^{-1}}} at 1 TeV for the tau lepton (τ+τ−\tau^{+}\tau^{-}) final state and 1.32×10−25cm3s−11.32\times 10^{-25}{\mathrm{ cm^3s^{-1}}} at 1 TeV for the gauge boson (γγ\gamma\gamma) final state.Comment: 14 pages, 9 figures, published in PRD, Ascii tables containing annihilation cross sections limits are available for download as ancillary files with readme.txt file description of limit

    A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS

    Full text link
    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883, making it an ideal candidate for the study of high-energy non-thermal emission. It has been the subject of multi-wavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high-energy gamma-ray observations carried out by VERITAS before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that very high-energy gamma rays are produced via an inverse-Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼\sim2 G before the disappearance of the radio pulsar and greater than ∼\sim10 G afterwards.Comment: 7 pages, 3 figures, accepted for publication in Ap

    Very-High-Energy γ\gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS

    Full text link
    We present very-high-energy γ\gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above background of 20.8σ20.8\sigma in 47.247.2 hours (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations the temporal properties of 1ES 2344+514 are studied on short and long times scales. We fit a constant flux model to nightly- and seasonally-binned light curves and apply a fractional variability test, to determine the stability of the source on different timescales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly-binned light curves and for the long-term seasonally-binned light curve at the >3σ> 3\sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (χ2/NDF=7.89/6{\chi^2/NDF = 7.89/6}) by a power-law function with index Γ=2.46±0.06stat±0.20sys\Gamma = 2.46 \pm 0.06_{stat} \pm 0.20_{sys} and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (χ2/NDF=6.73/6{\chi^2/NDF = 6.73/6}) by a power-law function with index Γ=2.15±0.06stat±0.20sys\Gamma = 2.15 \pm 0.06_{stat} \pm 0.20_{sys} while an F-test indicates that the power-law with exponential cutoff function provides a marginally-better fit (χ2/NDF\chi^2/NDF = 2.56/52.56 / 5 ) at the 2.1σ\sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal Astronomical Societ

    VERITAS and Multiwavelength Observations of the BL Lacertae Object 1ES 1741+196

    Full text link
    We present results from multiwavelength observations of the BL Lacertae object 1ES 1741+196, including results in the very-high-energy γ\gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well-modelled by a power law with a spectral index of 2.7±0.7stat±0.2syst2.7\pm0.7_{\mathrm{stat}}\pm0.2_{\mathrm{syst}}. The integral flux above 180 GeV is (3.9±0.8stat±1.0syst)×10−8(3.9\pm0.8_{\mathrm{stat}}\pm1.0_{\mathrm{syst}})\times 10^{-8} m−2^{-2} s−1^{-1}, corresponding to 1.6% of the Crab Nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Central-line-associated bloodstream infection burden among Dutch neonatal intensive care units

    Get PDF
    Background: The establishment of an epidemiological overview provides valuable insights needed for the (future) dissemination of infection-prevention initiatives. Aim: To describe the nationwide epidemiology of central-line-associated bloodstream infections (CLABSI) among Dutch Neonatal Intensive Care Units (NICUs). Methods: Data from 2935 neonates born at &lt;32 weeks' gestation and/or with a birth weight &lt;1500 g admitted to all nine Dutch NICUs over a two-year surveillance period (2019–2020) were analysed. Variations in baseline characteristics, CLABSI incidence per 1000 central-line days, pathogen distribution and CLABSI care bundles were evaluated. Multi-variable logistic mixed-modelling was used to identify significant predictors for CLABSI. Results:A total of 1699 (58%) neonates received a central line, in which 160 CLABSI episodes were recorded. Coagulase-negative staphylococci were the most common infecting organisms of all CLABSI episodes (N=100, 63%). An almost six-fold difference in the CLABSI incidence between participating units was found (2.91–16.14 per 1000 line-days). Logistic mixed-modelling revealed longer central line dwell-time (adjusted odds ratio (aOR):1.08, P&lt;0.001), umbilical lines (aOR:1.85, P=0.03) and single rooms (aOR:3.63, P=0.02) to be significant predictors of CLABSI. Variations in bundle elements included intravenous tubing care and antibiotic prophylaxis. Conclusions: CLABSI remains a common problem in preterm infants in The Netherlands, with substantial variation in incidence between centres. Being the largest collection of data on the burden of neonatal CLABSI in The Netherlands, this epidemiological overview provides a solid foundation for the development of a collaborative platform for continuous surveillance, ideally leading to refinement of national evidence-based guidelines. Future efforts should focus on ensuring availability and extraction of routine patient data in aggregated formats.</p

    A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421

    Get PDF
    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4×10−4\gtrsim 4\times 10^{-4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.Comment: 45 pages, 15 figure
    • …
    corecore