2 research outputs found

    A network-based analysis of the preterm adolescent brain using PCA and graph theory

    Get PDF
    The global increase in the rate of premature birth is of great concern since it is associated with an increase in a wide spectrum of neurologic and cognitive disorders. Neuroimaging analyses have been focused on white matter alterations in preterm subjects and findings have linked neurodevelopment impairment to white matter damage linked to premature birth. However, the trajectory of brain development into childhood and adolescence is less well described. Neuroimaging studies of extremely preterm born subjects in their adulthood are now available to investigate the long-term structural alterations of disrupted neurodevelopment. In this paper, we examine white matter pathways in the preterm adolescent brain by combining state-of-the-art diffusion techniques with graph theory and principal component analysis (PCA). Our results suggest that the pattern of connectivity is altered and differences in connectivity patterns result in more vulnerable premature brain network

    Neuropsychiatric Disease Classification Using Functional Connectomics - Results of the Connectomics in NeuroImaging Transfer Learning Challenge

    Get PDF
    Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew’s correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics
    corecore