23 research outputs found

    Gold Nanoparticles-Coated SU-8 for Sensitive Fluorescence-Based Detections of DNA

    Get PDF
    SU-8 epoxy-based negative photoresist has been extensively employed as a structural material for fabrication of numerous biological microelectro-mechanical systems (Bio-MEMS) or lab-on-a-chip (LOC) devices. However, SU-8 has a high autofluorescence level that limits sensitivity of microdevices that use fluorescence as the predominant detection workhorse. Here, we show that deposition of a thin gold nanoparticles layer onto the SU-8 surface significantly reduces the autofluorescence of the coated SU-8 surface by as much as 81% compared to bare SU-8. Furthermore, DNA probes can easily be immobilized on the Au surface with high thermal stability. These improvements enabled sensitive DNA detection by simple DNA hybridization down to 1 nM (a two orders of magnitude improvement) or by solid-phase PCR with sub-picomolar sensitivity. The approach is simple and easy to perform, making it suitable for various Bio-MEMs and LOC devices that use SU-8 as a structural material

    Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay

    Get PDF
    DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface-modified slides with aminated DNA probes. Moreover, the TC tag only costs 30% of the commonly used amino group modifications. Using this microarray fabrication technique, a portable cyclic olefin copolymer biochip containing eight individually addressable microfluidic channels was developed and used for rapid and parallel identification of Avian Influenza Virus by DNA hybridization. The one-step, cost-effective DNA-linking method on non-modified polymers significantly simplifies microarray fabrication procedures and permits great flexibility to plastic material selection, thus making it convenient to integrate microarrays into plastic microfluidic systems

    Automated wash and reuse of disposable pipette tips in a SARS-CoV-2 RT-qPCR diagnostic pipeline

    No full text
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic led to global shortages in laboratory consumables, in particular for automated PCR. The Technical University of Denmark supported Danish hospitals from 2020 to 2022, conducting SARS-CoV-2 RT-qPCR on around 10,000 patient samples daily. We encountered shortages of disposable pipette tips used with automated liquid handlers that transferred oropharyngeal swab samples to 96-well microplates before RNA extraction. To enable tip reuse, we developed an automated protocol for washing tips with a 0.5 % sodium hypochlorite solution. This effectively eliminated carry-over of genomic material and the wash solution remained effective when stored in an open reservoir at ambient temperatures for 24 h. A three-day validation setup demonstrated the robustness of the tip wash protocol. Reducing the number of tips used for transferring samples to 96-well microplates from 96 to 8 enabled us to mitigate pipette tip shortages, lower costs, and minimize plastic waste generation.</p
    corecore