8 research outputs found
Valuing vicinity: Memory attention framework for context-based semantic segmentation in histopathology
The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely. The identification of subtypes of tumour tissue complicates the issue as the sharpness of separation decreases and the pathologistâs reasoning is even more guided by spatial context. However, the identification of detailed tissue types is crucial for providing personalized cancer therapies. Due to the high resolution of whole slide images, existing semantic segmentation methods, restricted to isolated image sections, are incapable of processing context information beyond. To take a step towards better context comprehension, we propose a patch neighbour attention mechanism to query the neighbouring tissue context from a patch embedding memory bank and infuse context embeddings into bottleneck hidden feature maps. Our memory attention framework (MAF) mimics a pathologistâs annotation procedure â zooming out and considering surrounding tissue context. The framework can be integrated into any encoderâdecoder segmentation method. We evaluate the MAF on two public breast cancer and liver cancer data sets and an internal kidney cancer data set using famous segmentation models (U-Net, DeeplabV3) and demonstrate the superiority over other context-integrating algorithms â achieving a substantial improvement of up to 17% on Dice score
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Prior to the deep learning era, shape was commonly used to describe the
objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are
predominantly diverging from computer vision, where voxel grids, meshes, point
clouds, and implicit surface models are used. This is seen from numerous
shape-related publications in premier vision conferences as well as the growing
popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915
models). For the medical domain, we present a large collection of anatomical
shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument,
called MedShapeNet, created to facilitate the translation of data-driven vision
algorithms to medical applications and to adapt SOTA vision algorithms to
medical problems. As a unique feature, we directly model the majority of shapes
on the imaging data of real patients. As of today, MedShapeNet includes 23
dataset with more than 100,000 shapes that are paired with annotations (ground
truth). Our data is freely accessible via a web interface and a Python
application programming interface (API) and can be used for discriminative,
reconstructive, and variational benchmarks as well as various applications in
virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present
use cases in the fields of classification of brain tumors, facial and skull
reconstructions, multi-class anatomy completion, education, and 3D printing. In
future, we will extend the data and improve the interfaces. The project pages
are: https://medshapenet.ikim.nrw/ and
https://github.com/Jianningli/medshapenet-feedbackComment: 16 page
Accelerating from Zero to Global Hero : A Multiple-Case Study of Accelerators promoting Participants to become Born Globals
In recent years, accelerators have gained increasingly attention due to their numerical growth, geographic dispersion, and growing numbers of participants they have worked with. Uber, Airbnb, Dropbox or Reddit â they have not only been participants of accelerators, but they can also be identified as âBorn Globalsâ according to the definition used throughout this thesis. Considering this fact and the lack of research in theory on the interrelation of both phenomena, accelerators and Born Global, it is interesting to dig deeper into the impact accelerators have on their respective participantsâ global development. For this purpose, the authors conducted a multiple-case study to find answers to the question of what elements of accelerators promote participants to become Born Globals. This multiple-case study included semi-structured interviews with managers of four different cases of accelerators and three respective former participants as well as complementarily used secondary data in terms of company documents. Drawing from empirical evidence, it was found that the major elements of the examined accelerators fostering the participantsâ development towards Born Globals can be summarized into five major categories: âApplication Processâ, âInterpersonal Connectionsâ, âProduct & Coaching Methodologiesâ, âEducationâ, and âStartup Community & Entrepreneurial Ecosystemâ
CellViT: Vision Transformers for Precise Cell Segmentation and Classification
Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E)
tissue images are important clinical tasks and crucial for a wide range of
applications. However, it is a challenging task due to nuclei variances in
staining and size, overlapping boundaries, and nuclei clustering. While
convolutional neural networks have been extensively used for this task, we
explore the potential of Transformer-based networks in this domain. Therefore,
we introduce a new method for automated instance segmentation of cell nuclei in
digitized tissue samples using a deep learning architecture based on Vision
Transformer called CellViT. CellViT is trained and evaluated on the PanNuke
dataset, which is one of the most challenging nuclei instance segmentation
datasets, consisting of nearly 200,000 annotated Nuclei into 5 clinically
important classes in 19 tissue types. We demonstrate the superiority of
large-scale in-domain and out-of-domain pre-trained Vision Transformers by
leveraging the recently published Segment Anything Model and a ViT-encoder
pre-trained on 104 million histological image patches - achieving
state-of-the-art nuclei detection and instance segmentation performance on the
PanNuke dataset with a mean panoptic quality of 0.51 and an F1-detection score
of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViTComment: 13 pages, 5 figures, appendix include
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
16 pagesPrior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedbac
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
16 pagesPrior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedbac
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
16 pagesPrior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedbac