271 research outputs found

    Isolated familial pheochromocytoma as a variant of von Hippel-Lindau disease.

    Get PDF
    Inherited pheochromocytomas are often part of familial syndromes, especially multiple endocrine neoplasia type 2 (MEN 2), retinal cerebellar hemangioblastomatosis [von Hippel-Lindau (vHL) disease] or neurofibromatosis type 1. It is not clear whether isolated familial pheochromocytoma exists as a separate clinical entity. In a family with pheochromocytomas in three generations and with at least seven affected members, we investigated by clinical and genetic analyses the presence or absence of associated conditions. The clinical investigations included ophthalmological and radiological studies for von Hippel-Lindau disease (magnetic resonance imaging of the brain, computed tomography of the abdomen, and direct ophthalmoscopy after mydriasis) and annual calcitonin stimulation tests for C cell disease in five members who agreed to regular follow-up. Besides the pheochromocytomas (so far, these have been multiple in five of seven individuals) no definite second associated condition was found. Genetic analysis did not identify any MEN 2-specific RET protooncogene point mutations (which are present in 97% of MEN 2a families). However, despite the complete absence of other clinical manifestations of the vHL disease (besides pheochromocytomas), a previously undescribed germline missense mutation in the vHL tumor suppressor gene was found (C775G transversion with a predicted substitution of a leucine by a valine at codon 259 in the putative vHL protein). We conclude that in this family the sole occurrence of pheochromocytoma is a variant of vHL disease

    Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER

    Get PDF
    The TRACER cosmic-ray detector, first flown on long-duration balloon (LDB) in 2003 for observations of the major primary cosmic-ray nuclei from oxygen (Z=8) to iron (Z=26), has been upgraded to also measure the energies of the lighter nuclei, including the secondary species boron (Z=5). The instrument was used in another LDB flight in 2006. The properties and performance of the modified detector system are described, and the analysis of the data from the 2006 flight is discussed. The energy spectra of the primary nuclei carbon (Z=6), oxygen, and iron over the range from 1 GeV amu−1^{-1} to 2 TeV amu−1^{-1} are reported. The data for oxygen and iron are found to be in good agreement with the results of the previous TRACER flight. The measurement of the energy spectrum of boron also extends into the TeV amu−1^{-1} region. The relative abundances of the primary nuclei, such as carbon, oxygen, and iron, above ∌10\sim10 GeV amu−1^{-1} are independent of energy, while the boron abundance, i.e. the B/C abundance ratio, decreases with energy as expected. However, there is an indication that the previously reported E−0.6E^{-0.6} dependence of the B/C ratio does not continue to the highest energies.Comment: 16 pages, 18 figures. Accepted for publication in Ap

    The PANDA GEM-based TPC Prototype

    Full text link
    We report on the development of a GEM-based TPC prototype for the PANDA experiment. The design and requirements of this device will be illustrated, with particular emphasis on the properties of the recently tested GEM-detector, the characterization of the read-out electronics and the development of the tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture

    Propagation of High-Energy Cosmic Rays through the Galaxy: Discussion and In- terpretation of TRACER Results

    Get PDF
    Abstract: The long-duration balloon flights of TRACER provide new measurements of the intensities and energy spectra of the arriving cosmic-ray nuclei with 5 ≀ Z ≀ 26 at high energies. In order to determine the particle composition and energy spectra at the cosmic-ray sources, changes occurring during the interstellar propagation of cosmic rays must be known. We use a simple propagation model with energydependent pathlength and derive constraints on the propagation parameters from a self-consistent fit to the measured energy spectra. We use the model to obtain the relative abundances of the cosmic ray nuclei at the acceleration site

    Cosmic Ray Energy Spectra of Primary Nuclei from Oxygen to Iron: Results from the TRACER 2003 LDB Flight

    Get PDF
    Abstract: The first long-duration balloon flight of TRACER in 2003 provided high-quality measurements of the primary cosmic-ray nuclei over the range oxygen (Z = 8) to iron (Z = 26). The analysis of these measurements is now complete, and we will present the individual energy spectra and absolute intensities of the nuclei O, Ne, Mg, Si, S, Ca, Ar, and Fe. The spectra cover the energy range from 1 GeV/nucleon to more than 10 TeV/nucleon, or in terms of total energy, to several 10 14 eV per particle. We compare our results with those of other recent observations in space and on balloons and notice, in general, good agreement with these data for those regions where overlap exists. We also compare our data with information that has recently been inferred from air shower observations

    Cosmic Ray Energy Spectra of Primary Nuclei from Oxygen to Iron: Results from the TRACER 2003 LDB Flight

    Get PDF
    Abstract: The first long-duration balloon flight of TRACER in 2003 provided high-quality measurements of the primary cosmic-ray nuclei over the range oxygen (Z = 8) to iron (Z = 26). The analysis of these measurements is now complete, and we will present the individual energy spectra and absolute intensities of the nuclei O, Ne, Mg, Si, S, Ca, Ar, and Fe. The spectra cover the energy range from 1 GeV/nucleon to more than 10 TeV/nucleon, or in terms of total energy, to several 10 14 eV per particle. We compare our results with those of other recent observations in space and on balloons and notice, in general, good agreement with these data for those regions where overlap exists. We also compare our data with information that has recently been inferred from air shower observations

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency
    • 

    corecore