38 research outputs found

    Assessment of CO2 storage capacity in geological formations of Germany and Northern Europe

    Get PDF
    CCS is discussed in a broad sense throughout Europe. In this paper a cautious, conservative estimate of CO2 storage capacity for Germany and its neighbouring countries where CO2 emissions from Germany could possibly be stored (Netherlands, France, Denmark, Norway, UK and Poland) is presented. Such a lower limit calculation is necessary for orientation purposes for potential investors and political decision-makers. Conservative CO2 sequestration capacity in deep saline aquifers for Germany is derived by the volumetric approach where parameters such as efficiency factor, CO2 density, porosity of the geological formation are of interest. It is assumed that every geological system is closed and thus an efficiency factor of 0.1 per cent (based on maximum pressure increase and total compressibility) for saline aquifers is applied. The capacity of German depleted oil and gas fields is based on cumulative recovery data and a sweep efficiency of 75 per cent. The storage capacity in the other considered countries, adjacent to Germany, are based on a critical review and adjustment of the results of the European reports JOULE II, GESTCO and GeoCapacity. The conservative capacities for all countries together amount to 49 Gt CO2, from which Norway and the UK provide 36 Gt, all offshore in the North Sea. Compared to the emissions from large point sources in these countries during 40 years (47.6 Gt of CO2), a virtual balance is achieved. This can only be reached, if a large scale CO2 pipeline system is installed to connect these countries, especially Germany, to the large sinks in the North Sea. If additional restrictions like source-sink matching, acceptance issues and injection rates constraints are taken into account, the available storage space gets increasingly scarce

    Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios

    Get PDF
    China is very active in the research and development of CO2 capture and storage technologies (CCS). However, existing estimates for CO2 storage capacity are very uncertain. This uncertainty is due to limited geological knowledge, a lack of large-scale research on CO2 injection, and different assessment approaches and parameter settings. Hence storage scenarios represent a method that can be used by policy makers to demonstrate the range of possible storage capacity developments, to help interpret uncertain results and to identify the limitations of existing assessments. In this paper, three storage scenarios are developed for China by evaluating China-wide studies supplemented with more detailed site- and basin-specific assessments. It is estimated that the greatest storage potential can be found in deep saline aquifers. Oil and gas fields may also be used. Coal seams are only included in the highest storage scenario. In total, the scenarios presented demonstrate that China has an effective storage capacity of between 65 and 1551 Gt of CO2. Furthermore, the authors emphasise a need for action to harmonise storage capacity assessment approaches due to the uncertainties involved in the capacity assessments analysed in this study

    Re-industrialisation and low carbon economy - can they go together? : Results from transdisciplinary scenarios for energy intensive industries

    Get PDF
    This paper draws upon an extensive transdisciplinary scenario development in the context of the stakeholder oriented preparation of the climate protection plan of the German federal state North Rhine-Westphalia, which is home to the most important heavy industry cluster in Europe. In that context we developed differentiated bottom up climate change mitigation strategies and scenarios for the major energy intensive industries aluminium, iron and steel, cement, lime, paper and steam cracker for olefin production together with representatives of industry as well as society

    Prospects of carbon capture and storage (CCS) in India's power sector : an integrated assessment

    Get PDF
    Objective: The aim of the present article is to conduct an integrated assessment in order to explore whether CCS could be a viable technological option for significantly reducing future CO2 emissions in India. Methods: In this paper, an integrated approach covering five assessment dimensions is chosen. However, each dimension is investigated using specific methods (graphical abstract). Results: The most crucial precondition that must be met is a reliable storage capacity assessment based on site-specific geological data since only rough figures concerning the theoretical capacity exist at present. Our projection of different trends of coal-based power plant capacities up to 2050 ranges between 13 and 111 Gt of CO2 that may be captured from coal-fired power plants to be built by 2050. If very optimistic assumptions about the country's CO2 storage potential are applied, 75 Gt of CO2 could theoretically be stored as a result of matching these sources with suitable sinks. If a cautious approach is taken by considering the country's effective storage potential, only a fraction may potentially be sequestered. In practice, this potential will decrease further with the impact of technical, legal, economic and social acceptance factors. Further constraints may be the delayed commercial availability of CCS in India, a significant barrier to achieving the economic viability of CCS, an expected net maximum reduction rate of the power plant’s greenhouse gas emissions of 71-74%, an increase of most other environmental and social impacts, and a lack of governmental, industrial or societal CCS advocates. Conclusion and practice implications: Several preconditions need to be fulfilled if CCS is to play a future role in reducing CO2 emissions in India, the most crucial one being to determine reliable storage capacity figures. In order to overcome these barriers, the industrialised world would need to make a stronger commitment in terms of CCS technology demonstration, cooperation and transfer to emerging economies like India. The integrated assessment might also be extended by a comparison with other low-carbon technology options to draw fully valid conclusions on the most suitable solution for a sustainable future energy supply in India

    Integrated assessment of carbon capture and storage (CCS) in South Africa's power sector

    Get PDF
    This article presents an integrated assessment conducted in order to explore whether carbon capture and storage (CCS) could be a viable technological option for significantly reducing future CO2 emissions in South Africa. The methodological approach covers a commercial availability analysis, an analysis of the long-term usable CO2 storage potential (based on storage capacity assessment, energy scenario analysis and source-sink matching), an economic and ecological assessment and a stakeholder analysis. The findings show, that a reliable storage capacity assessment is needed, since only rough figures concerning the effective capacity currently exist. Further constraints on the fast deployment of CCS may be the delayed commercial availability of CCS, significant barriers to increasing the economic viability of CCS, an expected net maximum reduction rate of the power plant's greenhouse gas emissions of 67%-72%, an increase in other environmental and social impacts, and low public awareness of CCS. One precondition for opting for CCS would be to find robust solutions to these constraints, taking into account that CCS could potentially conflict with other important policy objectives, such as affordable electricity rates to give the whole population access to electricity

    CCS - und viele Fragen

    No full text

    Analysis of CO2 mitigation policies in the Chinese cement industry

    Get PDF
    The cement industry is one of the major energy consuming and CO2 emitting sectors in China. In 2010, 1,868 million tons of cement has been produced, which accounted for 56.1% of the world's total cement production. The 11th Five-Year Plan (FYP) (2006-2010) included policy measures for CO2 emission abatement in cement production. Based on the main governmental framework of CO2 mitigation policies at national level in the cement sector, key policies and technologies used during this period are identified and their effects on CO2 reduction are assessed. This paper calculates the reduction of CO2 emissions related to four main policies and technologies for efficient cement production in the 11th and the 12th FYP (2011-2015) with 2005 as a reference year. These are waste heat recovery, closing outdated facilities, substitution for clinker production and other technologies aiming to increase energy efficiency. Due to these measures, we estimate that a total CO2 emission reduction during the 11th FYP of 397 million tonnes could be saved, which is considerably different to 185.75 million tonnes estimated by Zeng (2008) and 303 million tonnes by the NDRC by using different calculation methods. Of the four technologies, the 4th group of energy efficiency increasing techniques was the most important policy and avoided the largest amount of CO2 emissions. Previous energy intensity reduction was mainly due to the outdated production closing and energy efficiency improving. Based on the assessment of technology performance, it appears that there is still a large emission reduction potential in cement production processes. The paper calculates this potential for the 12th FYP period (2011-2015) based on these four identified policy measures. The result is compared to the Chinese government targets in the 12th FYP and promising future CO2 mitigation policies and technologies are proposed, such as the use of alternative energy

    Da kocht was hoch : wozu brauchen wir die CCS-Technologie?

    Get PDF
    Bis vor wenigen Jahren diskutierten vor allem Energieversorger und Umweltverbände über die Abscheidung und Lagerung von CO2. Mittlerweile ist die öffentliche Wahrnehmung von CCS gestiegen. Dabei dürfte die umstrittene Technologie für Deutschlands Kraftwerke weit weniger bedeutsam sein als für energiehungrige Schwellenländer
    corecore