239 research outputs found
Commissioning and performance of a phase-compensated optical link for the AWAKE experiment at CERN
In this work, we analyze the performance of the solution adopted for the
compensation of the phase drift of a 3 km optical fiber link used for the AWAKE
experiment at CERN. The link is devoted to transmit the reference signals used
to synchronize the SPS beam with the experiment to have a fixed phase relation,
regardless of the external conditions of the electronics and the link itself.
The system has been operating for more than a year without observed drift in
the beam phases. Specific measurements have proven that the jitter introduced
by the system is lower than 0.6 ps and the maximum phase drift of the link is
at the picosecond level.Comment: Poster presented at LLRF Workshop 2017 (LLRF2017, arXiv:1803.07677
Automated Classification of Airborne Laser Scanning Point Clouds
Making sense of the physical world has always been at the core of mapping. Up
until recently, this has always dependent on using the human eye. Using
airborne lasers, it has become possible to quickly "see" more of the world in
many more dimensions. The resulting enormous point clouds serve as data sources
for applications far beyond the original mapping purposes ranging from flooding
protection and forestry to threat mitigation. In order to process these large
quantities of data, novel methods are required. In this contribution, we
develop models to automatically classify ground cover and soil types. Using the
logic of machine learning, we critically review the advantages of supervised
and unsupervised methods. Focusing on decision trees, we improve accuracy by
including beam vector components and using a genetic algorithm. We find that
our approach delivers consistently high quality classifications, surpassing
classical methods
Progress with the Upgrade of the SPS for the HL-LHC Era
The demanding beam performance requirements of the High Luminosity (HL-) LHC
project translate into a set of requirements and upgrade paths for the LHC
injector complex. In this paper the performance requirements for the SPS and
the known limitations are reviewed in the light of the 2012 operational
experience. The various SPS upgrades in progress and still under consideration
are described, in addition to the machine studies and simulations performed in
2012. The expected machine performance reach is estimated on the basis of the
present knowledge, and the remaining decisions that still need to be made
concerning upgrade options are detailed.Comment: 3 p. Presented at 4th International Particle Accelerator Conference
(IPAC 2013
N-Methylimidazole Promotes The Reaction Of Homophthalic Anhydride With Imines
The addition of N-methylimidazole (NMI) to the reaction of homophthalic anhydride with imines such as pyridine-3-carboxaldehyde-N-trifluoroethylimine (9) reduces the amount of elimination byproduct and improves the yield of the formal cycloadduct, tetrahydroisoquinolonic carboxylate 10. Carboxanilides of such compounds are of interest as potential antimalarial agents. A mechanism that rationalizes the role of NMI is proposed, and a gram-scale procedure for the synthesis and resolution of 10 is also described
Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds
Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period
Machine layout and performance
The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new
energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working
in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain
and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity
(rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total
collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this
upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known
as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology
beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting
cavities for beam rotation with ultra-precise phase control, new technology and physical processes
for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation.
The present document describes the technologies and components that will be used to realise the project and is
intended to serve as the basis for the detailed engineering design of HL-LHC
OPERATIONAL PERFORMANCE OF THE LHC PROTON BEAMS WITH THE SPS LOW TRANSITION ENERGY OPTICS
Abstract An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed
OPERATIONAL PERFORMANCE OF THE LHC PROTON BEAMS WITH THE SPS LOW TRANSITION ENERGY OPTICS
Abstract An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed
Microevolution of Pandemic Vibrio parahaemolyticus Assessed by the Number of Repeat Units in Short Sequence Tandem Repeat Regions
The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10−4 mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered
Defining Reference Sequences for Nocardia Species by Similarity and Clustering Analyses of 16S rRNA Gene Sequence Data
International audienceBACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM) of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52%) corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra-species variability
- …