37 research outputs found

    The endocrine and paracrine control of menstruation

    No full text
    During the reproductive life, the human endometrium undergoes cycles of substantial remodeling including, at menstruation, a massive but delimited tissue breakdown immediately followed by scarless repair. The present review aims at summarizing the current knowledge on the endocrine and paracrine control of menstruation in the light of recent observations that undermine obsolete dogmas. Menstruation can be globally considered as a response to falling progesterone concentration. However, tissue breakdown is heterogeneous and tightly controlled in space and time by a complex network of regulators and effectors, including cytokines, chemokines, proteases and various components of an inflammatory response. Moreover, menstruation must be regarded as part of a complex and integrated mechanism of tissue remodeling including features that precede and follow tissue lysis, i.e. decidualization and immediate post-menstrual regeneration. The understanding of the regulation of menstruation is of major basic and clinical interest. Indeed, these mechanisms largely overlap with those controlling other histopathological occurrences of tissue remodeling, such as development and cancer, and inappropriate control of menstrual features is a major potential cause of two frequent endometrial pathologies (i.e. abnormal uterine bleeding and endometriosis)

    Métalloprotéinases matricielles

    No full text

    Ovarian steroids, mitogen-activated protein kinases, and/or aspartic proteinases cooperate to control endometrial remodeling by regulating gene expression in the stroma and glands

    No full text
    Explants from nonmenstrual endometria cultured in the absence of ovarian hormones undergo tissue breakdown. Addition of estradiol and progesterone (EP) prevents proteolysis. Explants include stromal and epithelial compartments which play different but complementary roles in endometrial physiology, including tissue remodeling and hormonal response. In order to characterize the cell type-specific contribution to regulation of tissue breakdown, we characterized the transcriptomes of microdissected stromal and glandular areas from endometrial explants cultured with or without EP. The datasets were also compared to other published endometrial transcriptomes. Finally, the contribution of proteolysis, hypoxia, and MAPKs to the regulation of selected genes was further investigated in explant culture. This analysis identified distinct gene expression profiles in stroma and glands, with differential response to EP, but functional clustering underlined convergence in biological processes, further indicating that endometrial remodeling requires cooperation between the two compartments through expression of cell type-specific genes. Only partial overlaps were observed between lists of genes involved in different occurrences of endometrial breakdown, pointing to a limited number of potentially crucial regulators but also to the requirement for additional mechanisms controlling tissue remodeling. We identified a group of genes differentially regulated by EP in stroma and glands among which some were sensitive to MAPKs and/or aspartic proteinases and were not induced by hypoxia. In conclusion, MAPKs and/or aspartic proteinases likely act in concert with EP to locally and specifically control differential expression of genes between degrading and preserved areas of the human endometrium
    corecore