2 research outputs found

    Prodromal symptoms and the duration of untreated psychosis in first episode of psychosis patients: what differences are there between early vs. adult onset and between schizophrenia vs. bipolar disorder?

    Get PDF
    To assess the role of age (early onset psychosis-EOP < 18 years vs. adult onset psychosis-AOP) and diagnosis (schizophrenia spectrum disorders-SSD vs. bipolar disorders-BD) on the duration of untreated psychosis (DUP) and prodromal symptoms in a sample of patients with a first episode of psychosis. 331 patients with a first episode of psychosis (7–35 years old) were recruited and 174 (52.6%) diagnosed with SSD or BD at one-year follow-up through a multicenter longitudinal study. The Symptom Onset in Schizophrenia (SOS) inventory, the Positive and Negative Syndrome Scale and the structured clinical interviews for DSM-IV diagnoses were administered. Generalized linear models compared the main effects and group interaction. 273 AOP (25.2 ± 5.1 years; 66.5% male) and 58 EOP patients (15.5 ± 1.8 years; 70.7% male) were included. EOP patients had significantly more prodromal symptoms with a higher frequency of trouble with thinking, avolition and hallucinations than AOP patients, and significantly different median DUP (91 [33–177] vs. 58 [21–140] days; Z = − 2.006, p = 0.045). This was also significantly longer in SSD vs. BD patients (90 [31–155] vs. 30 [7–66] days; Z = − 2.916, p = 0.004) who, moreover had different profiles of prodromal symptoms. When assessing the interaction between age at onset (EOP/AOP) and type of diagnosis (SSD/BD), avolition was significantly higher (Wald statistic = 3.945; p = 0.047), in AOP patients with SSD compared to AOP BD patients (p = 0.004). Awareness of differences in length of DUP and prodromal symptoms in EOP vs. AOP and SSD vs. BD patients could help improve the early detection of psychosis among minors

    Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay

    No full text
    Background: Saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is not insignificant, and procedures for reducing viral loads in the oral cavity have been proposed. Little research to date has been performed on the effect of mouthwashes on the SARS-CoV-2 virus, and some of their mechanisms of action remain unknown. Methods: SARS-CoV-2 positive nasopharyngeal swabs measured by RT-PCR were used for virucidal activity in a 1:1 ratio, with an incubation time of 1 min. The solutions used in this study were: iodopovidone (8 mg); * D-limonene, a terpene extracted from citrus peels (0.3%); † cetylpyridinium chloride (0.1%) (CPC); ‡ chlorhexidine gluconate (10%) (CHX); § a CPC (0.12%) and CHX (0.05%) containing formula; ** a formula containing essential oils; †† a CPC containing formula (0.07%); ‡‡ a D-limonene (0.2%) and CPC (0.05%) containing formula; §§ a solution containing sodium fluoride (0.05%) and CPC (0.075%); *** a solution containing CHX (0.12%) and; ††† a CHX (0.2%) containing formula. ‡‡‡ As a control reaction, saline solution or excipient solution (water, glycerin, citric acid, colorant, sodium citrate) was used. Conclusion: Within the limitations of this study, we can conclude that a mouthwash containing both D-limonene and CPC reduced the virucidal activity in about 6 logs (>99.999% reduction). Hence, establishing a clinical protocol for dentists is suggested, where all patients to be treated rinse pre-operatively with a mouthwash containing both D-limonene and CPC to reduce the likelihood of infection with SARS-CoV-2 for dentists. This is a relatively inexpensive way to reduce viral transmission of SARS-CoV-2 from infected individuals within the community. It is also a simple way to decrease infections from asymptomatic and pre-symptomatic patients
    corecore