86 research outputs found

    Unconventional aspects of electronic transport in delafossite oxides

    Full text link
    The electronic transport properties of the delafossite oxides ABO2_2 are usually understood in terms of two well separated entities, namely, the triangular A+^+ and (BO2_2)−^- layers. Here we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on CuRhO2_2 and CuCrO2_2, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals PdCoO2_2, PtCoO2_2 and PdCrO2_2 where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.Comment: 35 pages, 19 figure

    Large anisotropic thermal conductivity of intrinsically two-dimensional metallic oxide PdCoO2_2

    Full text link
    The highly conductive layered metallic oxide \pdcoo{} is a near-perfect analogue to an alkali metal in two dimensions. It is distinguished from other two-dimensional electron systems where the Fermi surface does not reach the Brillouin zone boundary by a high planar electron density exceeding 101510^{15} cm−2^{-2}. The simple single-band quasi-2D electronic structure results in strongly anisotropic transport properties and limits the effectiveness of electron-phonon scattering. Measurements on single crystals in the temperature range from 10-300K show that the thermal conductivity is much more weakly anisotropic than the electrical resistivity, as a result of significant phonon heat transport. The in-plane thermoelectric power is linear in temperature at 300\,K and displays a purity-dependent peak around 50K. Given the extreme simplicity of the band-structure, it is possible to identify this peak with phonon drag driven by normal electron-phonon scattering processes.Comment: 3 figure

    Mg substitution in CuCrO2 delafossite compounds

    Full text link
    A detailed investigation of the series CuCr(1-x)MgxO2 (x = 0.0 - 0.05) has been performed by making high-temperature resistivity and thermopower measurements, and by performing a theoretical analysis of the latter. Microstructure characterization has been carried out as well. Upon Mg2+ for Cr3+ substitution, a concomitant decrease in the electrical resistivity and thermopower values is found, up to x ~ 0.02 - 0.03, indicating a low solubility limit of Mg in the structure. This result is corroborated by scanning electron microscopy observations, showing the presence of MgCr2O4 spinels as soon as x = 0.005. The thermopower is discussed in the temperature-independent correlation functions ratio approximation as based on the Kubo formalism, and the dependence of the effective charge carrier density on the nominal Mg substitution rate is addressed. This leads to a solubility limit of 1.1% Mg in the delafossite, confirmed by energy dispersive X-ray spectroscopy analysis.Comment: 6 pages, 5 figure

    Dual electronic states in thermoelectric cobalt oxide

    Full text link
    We investigate the low temperature magnetic field dependence of the resistivity in the thermoelectric misfit cobalt oxide [Bi1.7Ca2O4]0.59CoO2 from 60 K down to 3 K. The scaling of the negative magnetoresistance demonstrates a spin dependent transport mechanism due to a strong Hund's coupling. The inferred microscopic description implies dual electronic states which explain the coexistence between localized and itinerant electrons both contributing to the thermopower. By shedding a new light on the electronic states which lead to a high thermopower, this result likely provides a new potential way to optimize the thermoelectric properties

    Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae

    Get PDF
    The abundance of lysozyme on mucosal surfaces suggests that successful colonizers must be able to evade its antimicrobial effects. Lysozyme has a muramidase activity that hydrolyzes bacterial peptidoglycan and a non-muramidase activity attributable to its function as a cationic antimicrobial peptide. Two enzymes (PgdA, a N-acetylglucosamine deacetylase, and Adr, an O-acetyl transferase) that modify different sites on the peptidoglycan of Streptococcus pneumoniae have been implicated in its resistance to lysozyme in vitro. Here we show that the antimicrobial effect of human lysozyme is due to its muramidase activity and that both peptidoglycan modifications are required for full resistance by pneumococci. To examine the contribution of lysozyme and peptidoglycan modifications during colonization of the upper respiratory tract, competition experiments were performed with wild-type and pgdAadr mutant pneumococci in lysozyme M-sufficient (LysM+/+) and -deficient (LysM−/−) mice. The wild-type strain out-competed the double mutant in LysM+/+, but not LysM−/− mice, indicating the importance of resistance to the muramidase activity of lysozyme during mucosal colonization. In contrast, strains containing single mutations in either pgdA or adr prevailed over the wild-type strain in both LysM+/+ and LysM−/− mice. Our findings demonstrate that individual peptidoglycan modifications diminish fitness during colonization. The competitive advantage of wild-type pneumococci in LysM+/+ but not LysM−/− mice suggests that the combination of peptidoglycan modifications reduces overall fitness, but that this is outweighed by the benefits of resistance to the peptidoglycan degrading activity of lysozyme

    Deux voix comme en écho : Savoir poser les vraies questions

    No full text
    • …
    corecore