58 research outputs found
Scalar Levin-Type Sequence Transformations
Sequence transformations are important tools for the convergence acceleration
of slowly convergent scalar sequences or series and for the summation of
divergent series. Transformations that depend not only on the sequence elements
or partial sums but also on an auxiliary sequence of so-called remainder
estimates are of Levin-type if they are linear in the , and
nonlinear in the . Known Levin-type sequence transformations are
reviewed and put into a common theoretical framework. It is discussed how such
transformations may be constructed by either a model sequence approach or by
iteration of simple transformations. As illustration, two new sequence
transformations are derived. Common properties and results on convergence
acceleration and stability are given. For important special cases, extensions
of the general results are presented. Also, guidelines for the application of
Levin-type sequence transformations are discussed, and a few numerical examples
are given.Comment: 59 pages, LaTeX, invited review for J. Comput. Applied Math.,
abstract shortene
Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962
- 968 (2003)] introduced in connection with the summation of the divergent
perturbation expansion of the hydrogen atom in an external magnetic field a new
sequence transformation which uses as input data not only the elements of a
sequence of partial sums, but also explicit estimates
for the truncation errors. The explicit
incorporation of the information contained in the truncation error estimates
makes this and related transformations potentially much more powerful than for
instance Pad\'{e} approximants. Special cases of the new transformation are
sequence transformations introduced by Levin [Int. J. Comput. Math. B
\textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189
- 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and
also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A
\textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations
- explicit expressions, recurrence formulas, explicit expressions in the case
of special remainder estimates, and asymptotic order estimates satisfied by
rational approximants to power series - is formulated in terms of hitherto
unknown mathematical properties of the new transformation introduced by
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable
formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of
Mathematical Physic
Some algorithms for numerical quadrature using the derivatives of the integrand in the integration interval
Some quadrature formulae using the derivatives of the integrand are discussed. As special cases are obtained generalizations of both the ordinary and the modified Romberg algorithms. In all cases the error terms are expressed in terms of Bernoulli polynomials and functions
- âŠ