2 research outputs found
A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits
A switched-capacitor (SC) neuromorphic system for closed-loop neural coupling in 28 nm CMOS is presented, occupying 600 um by 600 um. It offers 128 input channels (i.e., presynaptic terminals), 8192 synapses and 64 output channels (i.e., neurons). Biologically realistic neuron and synapse dynamics are achieved via a faithful translation of the behavioural equations to SC circuits. As leakage currents significantly affect circuit behaviour at this technology node, dedicated compensation techniques are employed to achieve biological-realtime operation, with faithful reproduction of time constants of several 100 ms at room temperature. Power draw of the overall system is 1.9 mW
Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS
Synaptic dynamics, such as long- and short-term plasticity, play an important role in the complexity and biological realism achievable when running neural networks on a neuromorphic IC. For example, they endow the IC with an ability to adapt and learn from its environment. In order to achieve the millisecond to second time constants required for these synaptic dynamics, analog subthreshold circuits are usually employed. However, due to process variation and leakage problems, it is almost impossible to port these types of circuits to modern sub-100nm technologies. In contrast, we present a neuromorphic system in a 28 nm CMOS process that employs switched capacitor (SC) circuits to implement 128 short term plasticity presynapses as well as 8192 stop-learning synapses. The neuromorphic system consumes an area of 0.36 mm(2) and runs at a power consumption of 1.9 mW. The circuit makes use of a technique for minimizing leakage effects allowing for real-time operation with time constants up to several seconds. Since we rely on SC techniques for all calculations, the system is composed of only generic mixed-signal building blocks. These generic building blocks make the system easy to port between technologies and the large digital circuit part inherent in an SC system benefits fully from technology scaling