200 research outputs found
Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms
We study a driven-dissipative system of atoms in the presence of laser
excitation to a Rydberg state and spontaneous emission. The atoms interact via
the blockade effect, whereby an atom in the Rydberg state shifts the Rydberg
level of neighboring atoms. We use mean-field theory to study how the Rydberg
population varies in space. As the laser frequency changes, there is a
continuous transition between the uniform and antiferromagnetic phases. The
nonequilibrium nature also leads to a novel oscillatory phase and bistability
between the uniform and antiferromagnetic phases.Comment: 4 pages + appendi
Collective quantum jumps of Rydberg atoms
We study an open quantum system of atoms with long-range Rydberg interaction,
laser driving, and spontaneous emission. Over time, the system occasionally
jumps between a state of low Rydberg population and a state of high Rydberg
population. The jumps are inherently collective and in fact exist only for a
large number of atoms. We explain how entanglement and quantum measurement
enable the jumps, which are otherwise classically forbidden.Comment: 4 page
Test of Causal Nonlinear Quantum Mechanics by Ramsey Interferometry with a Trapped Ion
Quantum mechanics requires the time evolution of the wave function to be linear. While this feature has been associated with the preservation of causality, a consistent causal nonlinear theory was recently developed. Interestingly, this theory is unavoidably sensitive to the full physical spread of the wave function, rendering existing experimental tests for nonlinearities inapplicable. Here, using well-controlled motional superpositions of a trapped ion, we set a stringent limit of 5.4×10^{-12} on the magnitude of the unitless scaling factor ε[over ˜]_{γ} for the predicted causal nonlinear perturbation
Local Detection of Quantum Correlations with a Single Trapped Ion
As one of the most striking features of quantum mechanics, quantum
correlations are at the heart of quantum information science. Detection of
correlations usually requires access to all the correlated subsystems. However,
in many realistic scenarios this is not feasible since only some of the
subsystems can be controlled and measured. Such cases can be treated as open
quantum systems interacting with an inaccessible environment. Initial
system-environment correlations play a fundamental role for the dynamics of
open quantum systems. Following a recent proposal, we exploit the impact of the
correlations on the open-system dynamics to detect system-environment quantum
correlations without accessing the environment. We use two degrees of freedom
of a trapped ion to model an open system and its environment. The present
method does not require any assumptions about the environment, the interaction
or the initial state and therefore provides a versatile tool for the study of
quantum systems.Comment: 6 Pages, 5 Figures + 6 Pages, 1 Figure of Supplementary Materia
Photoassociation of sodium in a Bose-Einstein condensate
We report on the formation of ultra-cold Na molecules using single-photon
photoassociation of a Bose-Einstein condensate. The photoassociation rate,
linewidth and light shift of the J=1, vibrational level of the
\mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the
photoassociation rate constant increases linearly with intensity, even where it
is predicted that many-body effects might limit the rate. Our observations are
everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity
type stuff, nothing Earth-shatterin
Some Recent Advances in Bound-State Quantum Electrodynamics
We discuss recent progress in various problems related to bound-state quantum
electrodynamics: the bound-electron g factor, two-loop self-energy corrections
and the laser-dressed Lamb shift. The progress relies on various advances in
the bound-state formalism, including ideas inspired by effective field theories
such as Nonrelativistic Quantum Electrodynamics. Radiative corrections in
dynamical processes represent a promising field for further investigations.Comment: 12 pages, nrc1 LaTeX styl
All-Optical Broadband Excitation of the Motional State of Trapped Ions
We have developed a novel all-optical broadband scheme for exciting,
amplifying and measuring the secular motion of ions in a radio frequency trap.
Oscillation induced by optical excitation has been coherently amplified to
precisely control and measure the ion's secular motion. Requiring only laser
line-of-sight, we have shown that the ion's oscillation amplitude can be
precisely controlled. Our excitation scheme can generate coherent motion which
is robust against variations in the secular frequency. Therefore, our scheme is
ideal to excite the desired level of oscillatory motion under conditions where
the secular frequency is evolving in time. Measuring the oscillation amplitude
through Doppler velocimetry, we have characterized the experimental parameters
and compared them with a molecular dynamics simulation which provides a
complete description of the system.Comment: 8 pages, 10 figure
- …