206 research outputs found

    Schwinger functions and light-quark bound states

    Full text link
    We examine the applicability and viability of methods to obtain knowledge about bound-states from information provided solely in Euclidean space. Rudimentary methods can be adequate if one only requires information about the ground and first excited state and assumptions made about analytic properties are valid. However, to obtain information from Schwinger functions about higher mass states, something more sophisticated is necessary. A method based on the correlator matrix can be dependable when operators are carefully tuned and errors are small. This method is nevertheless not competitive when an unambiguous analytic continuation of even a single Schwinger function to complex momenta is available.Comment: 27 pages, 14 figure

    Aspects and consequences of a dressed-quark-gluon vertex

    Full text link
    Features of the dressed-quark-gluon vertex and their role in the gap and Bethe-Salpeter equations are explored. It is argued that quenched lattice data indicate the existence of net attraction in the colour-octet projection of the quark-antiquark scattering kernel. This attraction affects the uniformity with which solutions of truncated equations converge pointwise to solutions of the complete gap and vertex equations. For current-quark masses less than the scale set by dynamical chiral symmetry breaking, the dependence of the dressed-quark-gluon vertex on the current-quark mass is weak. The study employs a vertex model whose diagrammatic content is explicitly enumerable. That enables the systematic construction of a vertex-consistent Bethe-Salpeter kernel and thereby an exploration of the consequences for the strong interaction spectrum of attraction in the colour-octet channel. With rising current-quark mass the rainbow-ladder truncation is shown to provide an increasingly accurate estimate of a bound state's mass. Moreover, the calculated splitting between vector and pseudoscalar meson masses vanishes as the current-quark mass increases, which argues for the mass of the pseudoscalar partner of the \Upsilon(1S) to be above 9.4 GeV. The absence of colour-antitriplet diquarks from the strong interaction spectrum is contingent upon the net amount of attraction in the octet projected quark-antiquark scattering kernel. There is a window within which diquarks appear. The amount of attraction suggested by lattice results is outside this domain.Comment: 22 pages, 12 figure

    On Nucleon Electromagnetic Form Factors: A Pre'cis

    Full text link
    Electron scattering at large Q^2 probes a nucleon's quark core. This core's contribution to electromagnetic form factors may be calculated using Poincare' covariant Faddeev amplitudes combined with a nucleon-photon vertex that automatically fulfills a Ward-Takahashi identity for on-shell nucleons. The calculated behaviour of G_E^p(Q^2)/G_M^p(Q^2) on 2<Q^2(GeV^2)<6 agrees with that inferred from polarisation transfer data, and exhibits a zero at Q^2\approx 6.5 GeV^2. There is some evidence that F_2(Q^2)/F_1(Q^2) \propto [\ln(Q^2/\Lambda^2)]^2/Q^2 for Q^2>6 GeV^2.Comment: Contribution to the proceedings of "Baryons 04," the 10th International Conference on the Structure of Baryons, 25-29/Oct./04, Ecole Polytechnique, Palaiseau; 5 pages, 3 figure

    Single-particle spectral function for the classical one-component plasma

    Full text link
    The spectral function for an electron one-component plasma is calculated self-consistently using the GW0 approximation for the single-particle self-energy. In this way, correlation effects which go beyond the mean-field description of the plasma are contained, i.e. the collisional damping of single-particle states, the dynamical screening of the interaction and the appearance of collective plasma modes. Secondly, a novel non-perturbative analytic solution for the on-shell GW0 self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, kappa<1/a_B. In the limit of low density, the non-perturbative self-energy behaves as n^(1/4), whereas a perturbation expansion leads to the unphysical result of a density independent self-energy [W. Fennel and H. P. Wilfer, Ann. Phys. Lpz._32_, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulae and compared to the GW0-result. At a plasma temperature of 100 eV and densities below 10^21 cm^-3, both approaches deviate less than 10% from each other.Comment: 14 pages, 9 figures accepted for publication in Phys. Rev. E v2: added section V (application of presented formalism to chemical potential of the OCP

    Mean field exponents and small quark masses

    Full text link
    We demonstrate that the restoration of chiral symmetry at finite-T in a class of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field transition, and that an accurate determination of the critical exponents using the chiral and thermal susceptibilities requires very small values of the current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models characterised by qualitatively different interactions also exhibit a mean field transition. Incipient in this observation is the suggestion that mean field exponents are a result of the gap equation's fermion substructure and not of the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice

    Current quark mass dependence of nucleon magnetic moments and radii

    Full text link
    A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Nature's fundamental parameters. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons' magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice

    Diquarks: condensation without bound states

    Full text link
    We employ a bispinor gap equation to study superfluidity at nonzero chemical potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory, QC2D, is an excellent exemplar: the order of truncation of the quark-quark scattering kernel: K, has no qualitative impact, which allows a straightforward elucidation of the effects of mu when the coupling is strong. In rainbow-ladder truncation, diquark bound states appear in the spectrum of the three-colour theory, a defect that is eliminated by an improvement of K. The corrected gap equation describes a superfluid phase that is semi-quantitatively similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid gap and the transition point in QC2D provide reliable quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi

    Sigma Terms of Light-Quark Hadrons

    Full text link
    A calculation of the current-quark mass dependence of hadron masses can help in using observational data to place constraints on the variation of nature's fundamental parameters. A hadron's sigma-term is a measure of this dependence. The connection between a hadron's sigma-term and the Feynman-Hellmann theorem is illustrated with an explicit calculation for the pion using a rainbow-ladder truncation of the Dyson-Schwinger equations: in the vicinity of the chiral limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of sigma_rho because the two dominant self-energy corrections to the rho-meson's mass largely cancel in their contribution to sigma_rho. The truncation is less accurate for the omega, however, because there is little to compete with an omega->rho+pi self-energy contribution that magnifies the value of sigma_omega by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain the current-quark mass dependence of the masses of the nucleon and Delta, and thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the "pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV and sigma_Delta~50MeV.Comment: 22 pages, reference list expande

    Nucleon electromagnetic form factors

    Get PDF
    Elastic electromagnetic nucleon form factors have long provided vital information about the structure and composition of these most basic elements of nuclear physics. The form factors are a measurable and physical manifestation of the nature of the nucleons' constituents and the dynamics that binds them together. Accurate form factor data obtained in recent years using modern experimental facilities has spurred a significant reevaluation of the nucleon and pictures of its structure; e.g., the role of quark orbital angular momentum, the scale at which perturbative QCD effects should become evident, the strangeness content, and meson-cloud effects. We provide a succinct survey of the experimental studies and theoretical interpretation of nucleon electromagnetic form factors.Comment: Topical review invited by Journal of Physics G: Nuclear and Particle Physics; 34 pages (contents listed on page 34), 11 figure
    • …
    corecore