9 research outputs found
Phytochemical screening and in vitro antimicrobial activity of Bougainvillea spectabilis flower extracts
Various flower extracts (Chloroform, ethyl acetate, ethanol and water) of Bougainvillea spectabilis were screened for their phytochemical constituents and also investigated for their antimicrobial activities. Phytochemical screening of flower extracts revealed the presence of alkaloids, flavonoides, phlobatannins and terpenoids. Steroids, phenol, tannins, cardinolides and volatile oils were absent in all the extracts. All flower extracts of B. spectabilis inhibited the growth of few of the bacterial and fungal strains tested with varied effectiveness. The maximum antibacterial activities were observed in ethanol and water extracts. The maximum antifungal activities were observed in chloroform and ethanol extracts. Thus the bioactive natural products in flower extracts of Bougainvillea spectabilis can be used in the development of new pharmaceuticals that address unmet therapeutic use
Beyond What Meets the Eye: Imaging and Imagining Wood MechanicalâStructural Properties
Abstract: Wood presents a hierarchical structure, containing features at all length scales: from the tracheids or vessels that make up its cellular structure, through to the microfibrils within the cell walls, down to the molecular architecture of the cellulose, lignin, and hemicelluloses that comprise its chemical makeup. This structure renders it with high mechanical (e.g., modulus and strength) and interesting physical (e.g., optical) properties. A better understanding of this structure, and how it plays a role in governing mechanical and other physical parameters, will help to better exploit this sustainable resource. Here, recent developments on the use of advanced imaging techniques for studying the structural properties of wood in relation to its mechanical properties are explored. The focus is on synchrotron nuclear magnetic resonance spectroscopy, Xâray diffraction, Xâray tomographical imaging, Raman and infrared spectroscopies, confocal microscopy, electron microscopy, and atomic force microscopy. Critical discussion on the role of imaging techniques and how fields are developing rapidly to incorporate both spatial and temporal ranges of analysis is presented