7 research outputs found

    Unifying the identification of biomedical entities with the Bioregistry

    No full text
    The standardized identification of biomedical entities is a cornerstone of interoperability, reuse, and data integration in the life sciences. Several registries have been developed to catalog resources maintaining identifiers for biomedical entities such as small molecules, proteins, cell lines, and clinical trials. However, existing registries have struggled to provide sufficient coverage and metadata standards that meet the evolving needs of modern life sciences researchers. Here, we introduce the Bioregistry, an integrative, open, community-driven metaregistry that synthesizes and substantially expands upon 23 existing registries. The Bioregistry addresses the need for a sustainable registry by leveraging public infrastructure and automation, and employing a progressive governance model centered around open code and open data to foster community contribution. The Bioregistry can be used to support the standardized annotation of data, models, ontologies, and scientific literature, thereby promoting their interoperability and reuse. The Bioregistry can be accessed through https://bioregistry.io and its source code and data are available under the MIT and CC0 Licenses at https://github.com/biopragmatics/bioregistry. © 2022, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A Simple Standard for Sharing Ontological Mappings (SSSOM)

    Get PDF
    Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec

    COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.

    No full text
    We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective
    corecore