460 research outputs found

    A Functional Protein Chip for Combinatorial Pathway Optimization and In Vitro Metabolic Engineering

    Get PDF
    Pathway optimization is, in general, a very demanding task due to the complex, nonlinear and largely unknown interactions of enzymes, regulators and metabolites. While in vitro reconstruction and pathway analysis is a viable alternative, a major limitation of this approach is the availability of the pathway enzymes for reliable pathway reconstruction. Here, we report the application of RNA display methods for the construction of fusion (chimeric) molecules, comprising mRNA and the protein they express, that can be used for the above purpose. The chimeric molecule is immobilized via hybridization of its mRNA end with homologous capture DNA spotted on a substrate surface. We show that the protein (enzyme) end of the fusion molecule retains its function under immobilized conditions and that the enzymatic activity is proportional to the amount of capture DNA spotted on the surface of a microarray or 96-well microplate. The relative amounts of all pathway enzymes can thus be changed at will by changing the amount of the corresponding capture DNA. Hence, entire pathways can be reconstructed and optimized in vitro from genomic information alone by generating chimeric molecules for all pathway enzymes in a single in vitro translation step and hybridizing on 96-well microplates where each well contains a different combination of capture DNA. We provide validation of this concept with the sequential reactions catalyzed by luciferase and nucleoside diphosphate kinase and further illustrate this method with the optimization of the five-step pathway for trehalose synthesis. Multi-enzyme pathways leading to the synthesis of specialty molecules can thus be optimized from genomic information about the pathway enzymes, provided the latter retain their activity under the in vitro immobilized conditions.Singapore-MIT Alliance (SMA

    Toward tunable dynamic repression using CRISPRi

    Get PDF
    CRISPR interference (CRISPRi) is widely utilized for regulation of target gene expression by repressing transcription. Simple design rules for the single guide RNA (sgRNA) and multiplexity won this method immense popularity. However, quantitative control of the expression levels at varying degrees in a dynamic manner using CRISPRi has been regarded difficult. To deal with this limitation, Fontana et al. modulated the expression levels of the components of CRISPRi, the deactivated Cas9 (dCas9), and the sgRNAs, using various constitutive or inducible promoters (Fontana et al., Biotechnol. J. 2018, 13, 1800069). They found that the expression level of sgRNA is the key to controlling CRISPRi. Modulation of sgRNA expression levels enabled quantitative tuning of the CRISPRi-regulated gene expression level. This approach is expected to be easily applied to diverse applications owing to its simplicity compared to the conventional approaches that modified target sequence or changed the expression level of dCas9.110Ysciescopu

    Efficient Conversion of Acetate to 3-Hydroxypropionic Acid by Engineered Escherichia coli

    Get PDF
    Acetate, which is an abundant carbon source, is a potential feedstock for microbial processes that produce diverse value-added chemicals. In this study, we produced 3-hydroxypropionic acid (3-HP) from acetate with engineered Escherichia coli. For the efficient conversion of acetate to 3-HP, we initially introduced heterologous mcr (encoding malonyl-CoA reductase) from Chloroflexus aurantiacus. Then, the acetate assimilating pathway and glyoxylate shunt pathway were activated by overexpressing acs (encoding acetyl-CoA synthetase) and deleting iclR (encoding the glyoxylate shunt pathway repressor). Because a key precursor malonyl-CoA is also consumed for fatty acid synthesis, we decreased carbon flux to fatty acid synthesis by adding cerulenin. Subsequently, we found that inhibiting fatty acid synthesis dramatically improved 3-HP production (3.00 g/L of 3-HP from 8.98 g/L of acetate). The results indicated that acetate can be used as a promising carbon source for microbial processes and that 3-HP can be produced from acetate with a high yield (44.6% of the theoretical maximum yield).11Ysciescopu

    3D-Printed Microfluidic Device for the Detection of Pathogenic Bacteria Using Size-based Separation in Helical Channel with Trapezoid Cross-Section

    Get PDF
    A facile method has been developed to detect pathogenic bacteria using magnetic nanoparticle clusters (MNCs) and a 3D-printed helical microchannel. Antibody-functionalized MNCs were used to capture E. coli (EC) bacteria in milk, and the free MNCs and MNC-EC complexes were separated from the milk using a permanent magnet. The free MNCs and MNC-EC complexes were dispersed in a buffer solution, then the solution was injected into a helical microchannel device with or without a sheath flow. The MNC-EC complexes were separated from the free MNCs via the Dean drag force and lift force, and the separation was facilitated in the presence of a sheath flow. The concentration of the E. coli bacteria was determined using a light absorption spectrometer, and the limit of detection was found to be 10 cfu/mL in buffer solution and 100 cfu/mL in milk.open119188sciescopu

    Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation

    Get PDF
    Expression profiling of multiple microRNAs (miRNAs) generally provides valuable information for understanding various biological processes. Thus, it is necessary to develop a sensitive and accurate miRNA assay suitable for multiplexing. Isothermal exponential amplification reaction (EXPAR) has received significant interest as an miRNA analysis method because of high amplification efficiency. However, EXPAR cannot be used for a broader range of applications owing to limitations such as complexity of probe design and lack of proper detection method for multiplex analysis. Here, we developed a sensitive and accurate multiplex miRNA profiling method using modified isothermal EXPAR combined with high-resolution capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). To increase target miRNA specificity, a stem-loop probe was introduced instead of a linear probe in isothermal EXPAR to allow specific amplification of multiple miRNAs with minimal background signals. CE-SSCP, a conformation-dependent separation method, was used for detection. Since CE-SSCP eliminates the need for probes to have different lengths, easier designing of probes with uniform amplification efficiency was possible. Eight small RNAs comprising six miRNAs involved in Caenorhabditis elegans development and two controls were analyzed. The expression patterns obtained using our method were concordant with those reported in previous studies, thereby supporting the proposed method's robustness and utility.113sciescopu

    Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype

    Get PDF
    With the increased attention on bio-based industry, demands for techniques that enable fast and effective strain improvement have been dramatically increased. Evolutionary engineering, which is less dependent on biological information, has been applied to strain improvement. Currently, synthetic biology has made great innovations in evolutionary engineering, particularly in the development of synthetic tools for phenotypic perturbation. Furthermore, discovering biological parts with regulatory roles and devising novel genetic circuits have promoted high-throughput screening and selection. In this review, we first briefly explain basics of synthetic biology tools for mutagenesis and screening of improved variants, and then describe how these strategies have been improved and applied to phenotypic engineering. Evolutionary engineering using advanced synthetic biology tools will enable further innovation in phenotypic engineering through the development of novel genetic parts and assembly into well-designed logic circuits that perform complex tasks.This work was supported by the Bio & Medical Technology Development Program (NRF-2018M3A9H3020459) and the C1 Gas Refnery Program (NRF2016M3D3A1A01913561) through the National Research Foundation (NRF) funded by Ministry of Science and ICT (MSIT). JY was partially supported by Basic Science Research Program (NRF-2018R1C1B6005764) through the National Research Foundation (NRF) funded by MSIT and SWS was partially supported by Creative-Pioneering Researchers Program through Seoul National University (SNU)

    Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis

    Get PDF
    A system-level framework of complex microbe-microbe and host-microbe chemical cross-Talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ? 1/4570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. ? The Author(s) 2017.113Ysciescopu

    Synthetic biology for industrial biotechnology

    No full text
    2

    Advanced bioprocess for the production of high value chemicals from carbon monoxide

    No full text
    2
    • โ€ฆ
    corecore