1,378 research outputs found
Star-shaped Local Density of States around Vortices in a Type II Superconductor
The electronic structure of vortices in a type II superconductor is analyzed
within the quasi-classical Eilenberger framework. The possible origin of a
sixfold ``star'' shape of the local density of states, observed by scanning
tunneling microscope experiments on NbSe, is examined in the light of the
three effects; the anisotropic pairing, the vortex lattice, and the anisotropic
density of states at the Fermi surface. Outstanding features of split parallel
rays of this star are well explained in terms of an anisotropic -wave
pairing. This reveals a rich internal electronic structure associated with a
vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques
SO(5) theory of insulating vortex cores in high- materials
We study the fermionic states of the antiferromagnetically ordered vortex
cores predicted to exist in the superconducting phase of the newly proposed
SO(5) model of strongly correlated electrons. Our model calculation gives a
natural explanation of the recent STM measurements on BSCCO, which in
surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur
Quasiparticle States at a d-Wave Vortex Core in High-Tc Superconductors: Induction of Local Spin Density Wave Order
The local density of states (LDOS) at one of the vortex lattice cores in a
high Tc superconductor is studied by using a self-consistent mean field theory
including interactions for both antiferromagnetism (AF) and d-wave
superconductivity (DSC). The parameters are chosen in such a way that in an
optimally doped sample the AF order is completely suppressed while DSC
prevails. In the mixed state, we show that the local AF-like SDW order appears
near the vortex core and acts as an effective local magnetic field on the
quasiparticles. As a result, the LDOS at the core exhibits a double-peak
structure near the Fermi level that is in good agreement with the STM
observations on YBCO and BSCCO. The presence of local AF order near the votex
core is also consistent with the recent neutron scattering experiment on LSCO.Comment: 4 pages, 2 ps figure
A Self-Consistent Microscopic Theory of Surface Superconductivity
The electronic structure of the superconducting surface sheath in a type-II
superconductor in magnetic fields is calculated
self-consistently using the Bogoliubov-de Gennes equations. We find that the
pair potential exhibits pronounced Friedel oscillations near the
surface, in marked contrast with the results of Ginzburg-Landau theory. The
role of magnetic edge states is emphasized. The local density of states near
the surface shows a significant depletion near the Fermi energy due to the
development of local superconducting order. We suggest that this structure
could be unveiled by scanning-tunneling microscopy studies performed near the
edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
Evaluation of Exchange-Correlation Energy, Potential, and Stress
We describe a method for calculating the exchange and correlation (XC)
contributions to the total energy, effective potential, and stress tensor in
the generalized gradient approximation. We avoid using the analytical
expressions for the functional derivatives of E_xc*rho, which depend on
discontinuous second-order derivatives of the electron density rho. Instead, we
first approximate E_xc by its integral in a real space grid, and then we
evaluate its partial derivatives with respect to the density at the grid
points. This ensures the exact consistency between the calculated total energy,
potential, and stress, and it avoids the need of second-order derivatives. We
show a few applications of the method, which requires only the value of the
(spin) electron density in a grid (possibly nonuniform) and returns a
conventional (local) XC potential.Comment: 7 pages, 3 figure
The Current Carried by Bound States of a Superconducting Vortex
We investigate the spectrum of quasiparticle excitations in the core of
isolated pancake vortices in clean layered superconductors. Analysis of the
spectral current density shows that both the circular current around the vortex
center as well as any transport current through the vortex core is carried by
localized states bound to the core by Andreev scattering. Hence the physical
properties of the core are governed in clean high- superconductors
(e.g. the cuprate superconductors) by the Andreev bound states, and not by
normal electrons as it is the case for traditional (dirty) high-
superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript.
Submitted to Physical Review
Ab initio Molecular Dynamics in Adaptive Coordinates
We present a new formulation of ab initio molecular dynamics which exploits
the efficiency of plane waves in adaptive curvilinear coordinates, and thus
provides an accurate treatment of first-row elements. The method is used to
perform a molecular dynamics simulation of the CO_2 molecule, and allows to
reproduce detailed features of its vibrational spectrum such as the splitting
of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens
the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure
Local density of states in the vortex lattice in a type II superconductor
Local density of states (LDOS) in the triangular vortex lattice is
investigated based on the quasi-classical Eilenberger theory. We consider the
case of an isotropic s-wave superconductor with the material parameter
appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the
LDOS shows cylindrical structure around a vortex core. On the other hand, at a
high field where the core regions substantially overlap each other, the LDOS is
sixfold star-shaped structure due to the vortex lattice effect. The orientation
of the star coincides with the experimental data of the scanning tunneling
microscopy. That is, the ray of the star extends toward the nearest-neighbor
(next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure
Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations
We present a simple and efficient technique in ab initio electronic-structure
calculation utilizing real-space double-grid with a high density of grid points
in the vicinity of nuclei. This technique promises to greatly reduce the
overhead for performing the integrals that involves non-local parts of
pseudopotentials, with keeping a high degree of accuracy. Our procedure gives
rise to no Pulay forces, unlike other real-space methods using adaptive
coordinates. Moreover, we demonstrate the potential power of the method by
calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure
- …
