14 research outputs found

    Universal gates for protected superconducting qubits using optimal control

    Full text link
    We employ quantum optimal control theory to realize quantum gates for two protected superconducting circuits: the heavy-fluxonium qubit and the 0-Ď€\pi qubit. Utilizing automatic differentiation facilitates the simultaneous inclusion of multiple optimization targets, allowing one to obtain high-fidelity gates with realistic pulse shapes. For both qubits, disjoint support of low-lying wave functions prevents direct population transfer between the computational-basis states. Instead, optimal control favors dynamics involving higher-lying levels, effectively lifting the protection for a fraction of the gate duration. For the 0-Ď€\pi qubit, offset-charge dependence of matrix elements among higher levels poses an additional challenge for gate protocols. To mitigate this issue, we randomize the offset charge during the optimization process, steering the system towards pulse shapes insensitive to charge variations. Closed-system fidelities obtained are 99% or higher, and show slight reductions in open-system simulations.Comment: 12 pages, 6 figure

    Bulk crystal growth and electronic characterization of the 3D Dirac Semimetal Na3Bi

    Full text link
    High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels (LL) were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals the linear magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillations are observed for the first time.Comment: To be published in a special issue of APL Material

    Grain size in low loss superconducting Ta thin films on c-axis sapphire

    Full text link
    In recent years, the implementation of thin-film Ta has led to improved coherence times in superconducting circuits. Efforts to further optimize this materials set have become a focus of the subfield of materials for superconducting quantum computing. It has been previously hypothesized that grain size could be correlated with device performance. In this work, we perform a comparative grain size experiment with α\alpha-Ta on cc-axis sapphire. Our evaluation methods include both room-temperature chemical and structural characterization and cryogenic microwave measurements, and we report no statistical difference in device performance between small- and larger-grain-size devices with grain sizes of 924 nm2^2 and 1700 nm2^2, respectively. These findings suggest that grain size is not correlated with loss in the parameter regime of interest for Ta grown on c-axis sapphire, narrowing the parameter space for optimization of this materials set

    Imaging electronic states on topological semimetals using scanning tunneling microscopy

    Full text link
    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference and emerging Landau levels at high magnetic field in Dirac semimetals Cd3_3As2_2 and Na3_3Bi, we observed extended Dirac-like bulk electronic bands. Quasiparticle interference imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes
    corecore