3 research outputs found

    Bioreduction of Sheep Carcasses Effectively Contains and Reduces Pathogen Levels under Operational and Simulated Breakdown Conditions

    No full text
    Options for the storage and disposal of animal carcasses are extremely limited in the EU after the introduction of the EU Animal By-products Regulations (ABPR; EC/1774/2002), leading to animosity within the livestock sector and the call for alternative methods to be validated. Novel storage technologies such as bioreduction may be approved under the ABPR provided that they can be shown to prevent pathogen proliferation. We studied the survival of Enterococcus faecalis, Salmonella spp., E. coli O157 and porcine parvovirus in bioreduction vessels containing sheep carcasses for approximately 4 months. The vessels were operated under two different scenarios: (A) where the water within was aerated and heated to 40 °C, and (B) with no aeration or heating, to simulate vessel failure. Microbial analysis verified that pathogens were contained within the bioreduction vessel and indeed reduced in numbers with time under both scenarios. This study shows that bioreduction can provide an effective and safe on-farm storage system for livestock carcasses prior to ultimate disposal. The findings support a review of the current regulatory framework so that bioreduction is considered for approval for industry use within the EU

    Concentration and composition of bioaerosol emissions from intensive farms: Pig and poultry livestock

    Get PDF
    Intensive farming is widespread throughout the UK and yet the health effects of bioaerosols which may be generated by these sites are currently not well researched. A scoping study was established to measure bioaerosols emitted from intensive pig (n = 3) and poultry farms (n = 3) during the period 2014-2015. The concentration of culturable mesophilic bacteria, Gram-negative bacteria, Staphylococcus spp., and fungi selecting for presumptive Aspergillus fumigatus were measured using single-stage impaction Andersen samplers, whilst endotoxin and (1→3)-β-D-glucan was undertaken using inhalable personal samplers. Particulate matter concentration was determined using an optical particulate monitor. Results showed that culturable bacteria, fungi, presumptive Staphylococcus aureus (confirmed only as Staphylococcus spp.) and endotoxin concentrations were elevated above background concentrations for distances of up to 250 m downwind of the source. Of all the culturable bioaerosols measured, bacteria and Staphylococcus spp. were identified as the most significant, exceeding published or proposed bioaerosol guidelines in the UK. In particular, culturable Staphylococcus spp. downwind was at least 61 times higher than background at the boundary and at least 8 times higher 70m downwind on the four farms tested. This research represents a novel dataset of intensive farm emissions within the UK. Future research should exploit the use of innovative culture-independent methods such as next generation sequencing to develop deeper insights into the make-up of microbial communities emitted from intensive farming facilities and which would better inform species of interest from a public health perspective
    corecore