5 research outputs found

    Traffic dynamics during the 2019 Kincade wildfire evacuation

    No full text
    Traffic models are a useful tool for evacuation planning and management in case of wildfires. Despite the availability of several evacuation models, the number of datasets that can be used for their calibration and validation is limited. This paper presents key traffic flow data collected during the 2019 Kincade Fire. The data (69 116 data points from 24 locations) have been sourced from the Performance Measurement System of the California Department of Transportation. A set of commonly used models that describe the relationships between speed, flow and density has been fit to the data and compared to the model from the Highway Capacity Manual. In evacuation scenarios, the vehicle speed is about 3.5 km/h lower in comparison with the speed in routine scenarios, both for low and high traffic density. This demonstrates that dedicated models are needed for an accurate estimation of traffic evacuation times

    The simulation of wildland-urban interface fire evacuation : The WUI-NITY platform

    No full text
    Wildfires are a significant safety risk to populations adjacent to wildland areas, known as the wildland-urban interface (WUI). This paper introduces a modelling platform called WUI-NITY. The platform is built on the Unity3D game engine and simulates and visualises human behaviour and wildfire spread during an evacuation of WUI communities. The purpose of this platform is to enhance the situational awareness of responders and residents during evacuation scenarios by providing information on the dynamic evolution of the emergency. WUI-NITY represents current and predicted conditions by coupling the three key modelling layers of wildfire evacuation, namely the fire, pedestrian, and traffic movement. This allows predictions of evacuation behaviour over time. The current version of WUI-NITY demonstrates the feasibility and advantages of coupling the modelling layers. Its wildfire modelling layer is based on FARSITE, the pedestrian layer implements a dedicated pedestrian response and movement model, and the traffic layer includes a traffic evacuation model based on the Lighthill-Whitham-Richards model. The platform also includes a sub-model called PERIL that designs the spatial location of trigger buffers. The main contribution of this work is in the development of a modular and model-agnostic (i.e., not linked to a specific model) platform with consistent levels of granularity (allowing a comparable modelling resolution in the representation of each layer) in all three modelling layers. WUI-NITY is a powerful tool to protect against wildfires; it can enable education and training of communities, forensic studies of past evacuations and dynamic vulnerability assessment of ongoing emergencies
    corecore