124 research outputs found

    Time-dependent correlation functions in a one-dimensional asymmetric exclusion process

    Full text link
    We study a one-dimensional anisotropic exclusion process describing particles injected at the origin, moving to the right on a chain of LL sites and being removed at the (right) boundary. We construct the steady state and compute the density profile, exact expressions for all equal-time n-point density correlation functions and the time-dependent two-point function in the steady state as functions of the injection and absorption rates. We determine the phase diagram of the model and compare our results with predictions from dynamical scaling and discuss some conjectures for other exclusion models.Comment: LATEX-file, 32 pages, Weizmann preprint WIS/93/01/Jan-P

    Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices

    Full text link
    We develop a scaling theory for KPZ growth in one dimension by a detailed study of the polynuclear growth (PNG) model. In particular, we identify three universal distributions for shape fluctuations and their dependence on the macroscopic shape. These distribution functions are computed using the partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for publication in PR

    Large Deviation Function of the Partially Asymmetric Exclusion Process

    Full text link
    The large deviation function obtained recently by Derrida and Lebowitz for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit. The asymmetry parameter rescales the scaling variable in a simple way. The finite-size corrections to the universal scaling function and the universal cumulant ratio are also obtained to the leading order.Comment: 10 pages, 2 eps figures, minor changes, submitted to PR

    Spectral gap of the totally asymmetric exclusion process at arbitrary filling

    Full text link
    We calculate the spectral gap of the Markov matrix of the totally asymmetric simple exclusion process (TASEP) on a ring of L sites with N particles. Our derivation is simple and self-contained and extends a previous calculation that was valid only for half-filling. We use a special property of the Bethe equations for TASEP to reformulate them as a one-body problem. Our method is closely related to the one used to derive exact large deviation functions of the TASEP

    General Reaction-Diffusion Processes With Separable Equations for Correlation Functions

    Full text link
    We consider general multi-species models of reaction diffusion processes and obtain a set of constraints on the rates which give rise to closed systems of equations for correlation functions. Our results are valid in any dimension and on any type of lattice. We also show that under these conditions the evolution equations for two point functions at different times are also closed. As an example we introduce a class of two species models which may be useful for the description of voting processes or the spreading of epidemics.Comment: 17 pages, Latex, No figure

    Asymptotic behavior of A + B --> inert for particles with a drift

    Full text link
    We consider the asymptotic behavior of the (one dimensional) two-species annihilation reaction A + B --> 0, where both species have a uniform drift in the same direction and like species have a hard core exclusion. Extensive numerical simulations show that starting with an initially random distribution of A's and B's at equal concentration the density decays like t^{-1/3} for long times. This process is thus in a different universality class from the cases without drift or with drift in different directions for the different species.Comment: LaTeX, 6pp including 3 figures in LaTeX picture mod

    Exact Solution of the Asymmetric Exclusion Model with Particles of Arbitrary Size

    Full text link
    A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2,...s = 0,1,2,..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of molecules's sizes may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent zz is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules the dynamical critical behavior is on the Kardar-Parizi-Zhang (KPZ) universality.Comment: 28 pages, 2 figures. To appear in Phys. Rev. E (1999

    Spatial Organization in the Reaction A + B --> inert for Particles with a Drift

    Full text link
    We describe the spatial structure of particles in the (one dimensional) two-species annihilation reaction A + B --> 0, where both species have a uniform drift in the same direction and like species have a hard core exclusion. For the case of equal initial concentration, at long times, there are three relevant length scales: the typical distance between similar (neighboring) particles, the typical distance between dissimilar (neighboring) particles, and the typical size of a cluster of one type of particles. These length scales are found to be generically different than that found for particles without a drift.Comment: 10 pp of gzipped uuencoded postscrip

    The Conical Point in the Ferroelectric Six-Vertex Model

    Full text link
    We examine the last unexplored regime of the asymmetric six-vertex model: the low-temperature phase of the so-called ferroelectric model. The original publication of the exact solution, by Sutherland, Yang, and Yang, and various derivations and reviews published afterwards, do not contain many details about this regime. We study the exact solution for this model, by numerical and analytical methods. In particular, we examine the behavior of the model in the vicinity of an unusual coexistence point that we call the ``conical'' point. This point corresponds to additional singularities in the free energy that were not discussed in the original solution. We show analytically that in this point many polarizations coexist, and that unusual scaling properties hold in its vicinity.Comment: 28 pages (LaTeX); 8 postscript figures available on request ([email protected]). Submitted to Journal of Statistical Physics. SFU-DJBJDS-94-0

    Fluctuating loops and glassy dynamics of a pinned line in two dimensions

    Full text link
    We represent the slow, glassy equilibrium dynamics of a line in a two-dimensional random potential landscape as driven by an array of asymptotically independent two-state systems, or loops, fluctuating on all length scales. The assumption of independence enables a fairly complete analytic description. We obtain good agreement with Monte Carlo simulations when the free energy barriers separating the two sides of a loop of size L are drawn from a distribution whose width and mean scale as L^(1/3), in agreement with recent results for scaling of such barriers.Comment: 11 pages, 4 Postscript figure
    • …
    corecore