7,035 research outputs found

    On the Hierarchical Preconditioning of the PMCHWT Integral Equation on Simply and Multiply Connected Geometries

    Full text link
    We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach

    Migration with local public goods and the gains from changing places

    Get PDF
    Without public goods and under fairly standard assumptions, in Hammond and Sempere (J Pub Econ Theory, 8: 145–170, 2006) we show that freeing migration enhances the potential Pareto gains from free trade. Here, we present a generalization allowing local public goods subject to congestion. Unlike the standard literature on fiscal externalities, our result relies on fixing both local public goods and congestion levels at their status quo values. This allows constrained efficient and potentially Pareto improving population exchanges regulated only through appropriate residence charges, which can be regarded as Pigouvian congestion taxes

    Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay

    Get PDF
    Objectives: Lead antituberculosis (anti-TB) molecules with novel mechanisms of action are urgently required to fuel the anti-TB drug discovery pipeline. The aim of this study was to validate the use of the high-throughput spot culture growth inhibition (HT-SPOTi) assay for screening libraries of compounds against Mycobacterium tuberculosis and to study the inhibitory effect of ibuprofen (IBP) and the other 2-arylpropanoic acids on the growth inhibition of M tuberculosis and other mycobacterial species. Methods: The HT-SPOTi method was validated not only with known drugs but also with a library of 47 confirmed anti-TB active compounds published in the ChEMBL database. Three over-the-counter non-steroidal anti-inflammatory drugs were also included in the screening. The 2-arylpropanoic acids, including IBP, were comprehensively evaluated against phenotypically and physiologically different strains of mycobacteria, and their cytotoxicity was determined against murine RAW264.7 macrophages. Furthermore, a comparative bioinformatic analysis was employed to propose a potential mycobacterial target. Results: IBP showed antitubercular properties while carprofen was the most potent among the 2-arylpropanoic class. A 3,5-dinitro-IBP derivative was found to be more potent than IBP but equally selective. Other synthetic derivatives of IBP were less active, and the free carboxylic acid of IBP seems to be essential for its anti-TB activity. IBP, carprofen and the 3,5-dinitro-IBP derivative exhibited activity against multidrug-resistant isolates and stationary phase bacilli. On the basis of the human targets of the 2-arylpropanoic analgesics, the protein initiation factor infB (Rv2839c) of M tuberculosis was proposed as a potential molecular target. Conclusions: The HT-SPOTi method can be employed reliably and reproducibly to screen the antimicrobial potency of different compounds. IBP demonstrated specific antitubercular activity, while carprofen was the most selective agent among the 2-arylpropanoic class. Activity against stationary phase bacilli and multidrug-resistant isolates permits us to speculate a novel mechanism of antimycobacterial action. Further medicinal chemistry and target elucidation studies could potentially lead to new therapies against TB

    Line-Strength Indices in Bright Spheroidals: Evidence for a Stellar Population Dichotomy between Spheroidal and Elliptical Galaxies

    Get PDF
    We present new measurements of central line-strength indices (namely Mg2, , and Hbeta and gradients for a sample of 6 bright spheroidal galaxies (Sph's) in the Virgo cluster. Comparison with similar measurements for elliptical galaxies (E's), galactic globular clusters (GGC's), and stellar population models yield the following results: (1) In contrast with bright E's, bright Sph's are consistent with solar abundance [Mg/Fe] ratios; (2) Bright Sph's exhibit metallicities ranging from values typical for metal-rich GGC's to those for E's; (3) Although absolute mean ages are quite model dependent, we find evidence that the stellar populations of some (if not all) Sph's look significantly younger than GGC's; and (4) Mg2 gradients of bright Sph's are significantly shallower than those of E galaxies. We conclude that the dichotomy found in the structural properties of Sph and E galaxies is also observed in their stellar populations. A tentative interpretation in terms of differences in star formation histories is suggested.Comment: 14 pages, LaTeX file + 2 PostScript figures, aasms4.sty require

    The Universality of the Fundamental Plane of E and S0 Galaxies. Spectroscopic data

    Full text link
    We present here central velocity dispersion measurements for 325 early-type galaxies in eight clusters and groups of galaxies, including new observations for 212 galaxies. The clusters and groups are the A262, A1367, Coma (A1656), A2634, Cancer and Pegasus clusters, and the NGC 383 and NGC 507 groups. The new measurements were derived from medium dispersion spectra, that cover 600 A centered on the Mg Ib triplet at lambda ~ 5175. Velocity dispersions were measured using the Tonry & Davis cross-correlation method, with a typical accuracy of 6%. A detailed comparison with other data sources is made.Comment: 12 pages, 5 tables, 3 figures, to appear in AJ. Note that tables 2 and 3 are in separate files, as they should be printed in landscape forma

    Atmospheric turbulence profiling using multiple laser star wavefront sensors

    Get PDF
    This paper describes the data pre-processing and reduction methods together with SLOpe Detection And Ranging (SLODAR) analysis and wind profiling techniques for the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). The wavefront gradient measurements of the five GeMS Shack–Hartmann sensors, each pointing to a laser guide star, are combined with the deformable mirror (DM) commands sent to three DMs optically conjugated at 0, 4.5 and 9 km in order to reconstruct pseudo-open loop slopes. These pseudo-open loop slopes are then used to reconstruct atmospheric turbulence profiles, based on the SLODAR and wind-profiling methods. We introduce the SLODAR method, and how it has been adapted to work in a closed-loop, multi-laser guide star system. We show that our method allows characterizing the turbulence of up to 16 layers for altitudes spanning from 0 to 19 km. The data pre-processing and reduction methods are described, and results obtained from observations made in 2011 are presented. The wind profiling analysis is shown to be a powerful technique not only for characterizing the turbulence intensity, wind direction and speed, but also as it can provide a verification tool for SLODAR results. Finally, problems such as the fratricide effect in multiple laser systems due to Rayleigh scattering, centroid gain variations, and limitations of the method are also addressed

    Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a continuous atom laser based on the merging of independently formed atomic condensates. In a first attempt to understand the dynamics of the system, we consider two independent elongated Bose-Einstein condensates which approach each other and focus on intermediate inter-trap distances so that a two-mode model is well justified. In the framework of a mean-field theory, we discuss the quasi steady-state population of the traps as well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.

    Influence of intrinsic decoherence on nonclassical properties of the output of a Bose-Einstein condensate

    Full text link
    We investigate nonclassical properties of the output of a Bose-Einstein condensate in Milburn's model of intrinsic decoherence. It is shown that the squeezing property of the atom laser is suppressed due to decoherence. Nevertheless, if some very special conditions were satisfied, the squeezing properties of atom laser could be robust against the decoherence.Comment: 17 pages, 5 figures, Late

    Quantum and classical thermal correlations in the XY spin-1/2 chain

    Full text link
    We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second-neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, the thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit

    Development of a Soil Carbon Index for Iowa Mineral Soils

    Get PDF
    A carbon index (Cl) is one of many soil quality indicators that depends on organic carbon concentration. One of the values of a soil carbon index is in determining the impact of agriculture practices (i.e., tillage, crop rotation, N management, etc.) on soil organic matter status of mineral soils. Interactions of climate, parent material, topography, time, and organisms including human activities influence soil organic carbon (SOC). This study developed a soil carbon index for mineral soil map units in Iowa using data collected by the Iowa Cooperative Soil Survey Laboratory and the USDA Soil Survey Laboratory for over 2,300 soil map units across the state in the past 20-30 years. The results show that the soil CI is highly influenced by soil forming factors. The highest soil carbon index was associated with soil map units of soils that are poorly drained, have moderately fine textures, and are on relatively flat topography as in the Clarion-Nicollet-Webster soils association area in north-central Iowa. Additionally, there was a negative correlation between the number of hectares of soils formed under deciduous forest vegetation and CI values within a county. The CI is also related to soil productivity in the state. Fifty five percent of the variability of the corn suitability ratings was explained by the CI. The CI is a valuable tool in evaluating soil organic matter status, productivity of Iowa soils, and land valu
    • …
    corecore