368 research outputs found

    Polymorphism in NEDD4L Is Associated with Increased Salt Sensitivity, Reduced Levels of P-renin and Increased Levels of Nt-proANP

    Get PDF
    OBJECTIVE: Neuronal precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is a regulator of the amiloride-sensitive epithelial sodium channel (ENaC), thus a candidate gene for salt sensitivity. Carriers of an intact NEDD4L C2-domain, encoded by the NEDD4L rs4149601 (G/A) GG genotype, together with the C-allele of the NEDD4L rs2288774 (C/T) polymorphism have previously been shown to have increased blood pressure. Our aim was to test if genetic variation in NEDD4L is associated with increased salt sensitivity. METHODS: 39 normotensive subjects were studied. The difference in 24-hour systolic blood pressure after four weeks on 150 mmol/day NaCl intake and four weeks on 50 mmol/day NaCl was defined as salt sensitivity. The rs4149601 and rs2288774 polymorphisms were genotyped using PCR-based techniques. RESULTS: Carriers of the rs4149601 GG-genotype together with the rs2288774 CC-genotype had significantly higher salt sensitivity (median, IQR) (18.0, 7.5–20.0 mmHg vs 6.0, 0.0–10.0 mmHg, P = 0.007) and lower plasma renin concentration (P-renin) (6.0, 2.0–9.5 mU/L vs 15.0, 9.0–24.0 mU/L, P = 0.005) as compared to non-carriers of these genotypes. In carriers of the rs4149601 GG-genotype together with the rs2288774 CC- or CT-genotype, as compared to non-carriers, salt sensitivity was (8.0, 6.0–18.0 mmHg vs 5.0, 0.0–10.0 mmHg, P = 0.07) and P-renin (9.0, 6.0–16.0 mU/L vs 15.0, 9.0–28.0 mU/L, P = 0.03). CONCLUSION: Genetic NEDD4L variation seems to affect salt sensitivity and P-renin in normotensive subjects, suggesting that genotyping of NEDD4L may be clinically useful in order to identify subjects who benefit from dietary salt restriction in the prevention of hypertension

    Potentials of leaves of Aspilia africana (Compositae) in wound care: an experimental evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potentials of the leaves of the haemorrhage plant, <it>Aspilia africana </it>C. D Adams (Compositae) in wound care was evaluated using experimental models. <it>A. africana</it>, which is widespread in Africa, is used in traditional medicine to stop bleeding from wounds, clean the surfaces of sores, in the treatment of rheumatic pains, bee and scorpion stings and for removal of opacities and foreign bodies from the eyes. The present study was undertaken to evaluate the potentials for use of leaves of this plant in wound care.</p> <p>Methods</p> <p>The effect of the methanol extract (ME) and the hexane (HF) and methanol (MF) fractions (obtained by cold maceration and graded solvent extraction respectively) on bleeding/clotting time of fresh experimentally-induced wounds in rats, coagulation time of whole rat blood, growth of microbial wound contaminants and rate of healing of experimentally-induced wounds in rats were studied as well as the acute toxicity and lethality (LD<sub>50</sub>) of the methanol extract and phytochemical analysis of the extract and fractions.</p> <p>Results</p> <p>The extract and fractions significantly (<it>P </it>< 0.05) reduced bleeding/clotting time in rats and decreased coagulation time of whole rat blood in order of magnitude of effect: MF>ME>HF. Also, the extract and fractions caused varying degrees of inhibition of the growth of clinical isolates of <it>Pseudomonas fluorescens </it>and <it>Staphylococcus aureus</it>, as well as typed strains of <it>Ps. aeruginosa </it>(ATCC 10145) and <it>Staph. aureus </it>(ATCC 12600), and reduced epithelialisation period of wounds experimentally-induced in rats. Acute toxicity and lethality (LD<sub>50</sub>) test in mice established an i.p LD<sub>50 </sub>of 894 mg/kg for the methanol extract (ME). Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, flavonoids, resins, sterols, terpenoids and carbohydrates.</p> <p>Conclusion</p> <p>The leaves of <it>A. africana </it>possess constituents capable of arresting wound bleeding, inhibiting the growth of microbial wound contaminants and accelerating wound healing which suggest good potentials for use in wound care.</p

    Aorto-ventricular tunnel

    Get PDF
    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta

    Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate.</p> <p>Results</p> <p>The theoretical investigation demonstrates that elimination of myoglobin only slightly increases the predicted range of oscillation of cardiac oxygenation level during beat-to-beat transients in blood flow and ATP utilization. In silico elimination of myoglobin has almost no impact on the cytoplasmic ATP hydrolysis potential (Δ<it>G</it><sub>ATPase</sub>). In contrast, disabling the creatine kinase system results in considerable oscillations of cytoplasmic ADP and ATP levels and seriously deteriorates the stability of Δ<it>G</it><sub>ATPase </sub>in the beating heart.</p> <p>Conclusion</p> <p>The CK system stabilizes Δ<it>G</it><sub>ATPase </sub>by both buffering ATP and ADP concentrations and enhancing the feedback signal of inorganic phosphate in regulating mitochondrial oxidative phosphorylation.</p

    The Kidneys and Aldosterone/Mineralocorticoid Receptor System in Salt-Sensitive Hypertension

    Get PDF
    Strong evidence supports the ability of the aldosterone/mineralocorticoid receptor (MR) system to dominate long-term blood pressure control. It is also increasingly recognized as an important mediator of cardiovascular and renal diseases, particularly in the presence of excessive salt intake. In a subgroup of individuals with metabolic syndrome, adipocyte-derived aldosterone-releasing factors cause inappropriate secretion of aldosterone in the adrenal glands during salt loading, resulting in the development of salt-induced hypertension and cardiac and renal damage. On the other hand, emerging data reveal that aldosterone is not a sole regulator of MR activity. We have identified the signaling crosstalk between MR and small GTPase Rac1 as a novel pathway to facilitate MR signaling. Such a local control system for MR can also be relevant to the pathogenesis of salt-sensitive hypertension, and future studies will clarify the detailed mechanism for the intricate regulation of the aldosterone/MR cascade

    The RICORDO approach to semantic interoperability for biomedical data and models: strategy, standards and solutions.

    Get PDF
    BACKGROUND: The practice and research of medicine generates considerable quantities of data and model resources (DMRs). Although in principle biomedical resources are re-usable, in practice few can currently be shared. In particular, the clinical communities in physiology and pharmacology research, as well as medical education, (i.e. PPME communities) are facing considerable operational and technical obstacles in sharing data and models. FINDINGS: We outline the efforts of the PPME communities to achieve automated semantic interoperability for clinical resource documentation in collaboration with the RICORDO project. Current community practices in resource documentation and knowledge management are overviewed. Furthermore, requirements and improvements sought by the PPME communities to current documentation practices are discussed. The RICORDO plan and effort in creating a representational framework and associated open software toolkit for the automated management of PPME metadata resources is also described. CONCLUSIONS: RICORDO is providing the PPME community with tools to effect, share and reason over clinical resource annotations. This work is contributing to the semantic interoperability of DMRs through ontology-based annotation by (i) supporting more effective navigation and re-use of clinical DMRs, as well as (ii) sustaining interoperability operations based on the criterion of biological similarity. Operations facilitated by RICORDO will range from automated dataset matching to model merging and managing complex simulation workflows. In effect, RICORDO is contributing to community standards for resource sharing and interoperability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression

    Get PDF
    BACKGROUND: Cyclooxygenase (COX) is the rate-limiting enzyme that catalyzes the formation of prostaglandins. The inducible isoform of COX (COX-2) is highly expressed in aggressive metastatic breast cancers and may play a critical role in cancer progression (i.e. growth and metastasis). However, the exact mechanism(s) for COX-2-enhanced metastasis has yet to be clearly defined. It is well established that one of the direct results of COX-2 action is increased prostaglandin production, especially prostaglandin E(2 )(PGE(2)). Here, we correlate the inhibition of COX-2 activity with decreased breast cancer cell proliferation, migration, invasion and matrix metalloproteinase (MMP) expression. METHODS: Breast cancer cells (Hs578T, MDA-MB-231 and MCF-7) were treated with selective COX-2 inhibitors (NS-398 and Niflumic acid, NA). Cell proliferation was measured by staining with erythrosin B and counting the viable cells using a hemacytometer. Cell migration and invasion were measured using migration and invasion chamber systems. MMP expression was determined by enzyme immunoassay (secreted protein) and real-time quantitative polymerase chain reaction (mRNA). RESULTS: Our results show that there is a decline in proliferation, migration and invasion by the Hs578T and MDA-MB-231 breast cancer cell lines in the presence of either low concentrations (1 μM or lower) NA or NS-398. We also report that MMP mRNA and protein expression by Hs578T cells is inhibited by NS-398; there was a 50% decrease by 100 μM NS-398. PGE(2 )completely reversed the inhibitory effect of NS-398 on MMP mRNA expression. CONCLUSION: Our data suggests that COX-2-dependent activity is a necessary component for cellular and molecular mechanisms of breast cancer cell motility and invasion. COX-2 activity also modulates the expression of MMPs, which may be a part of the molecular mechanism by which COX-2 promotes cell invasion and migration. The studies suggest that COX-2 assists in determining and defining the metastatic signaling pathways that promote the breast cancer progression to metastasis
    • …
    corecore