620 research outputs found

    A Modeling Approach based on UML/MARTE for GPU Architecture

    Get PDF
    Nowadays, the High Performance Computing is part of the context of embedded systems. Graphics Processing Units (GPUs) are more and more used in acceleration of the most part of algorithms and applications. Over the past years, not many efforts have been done to describe abstractions of applications in relation to their target architectures. Thus, when developers need to associate applications and GPUs, for example, they find difficulty and prefer using API for these architectures. This paper presents a metamodel extension for MARTE profile and a model for GPU architectures. The main goal is to specify the task and data allocation in the memory hierarchy of these architectures. The results show that this approach will help to generate code for GPUs based on model transformations using Model Driven Engineering (MDE).Comment: Symposium en Architectures nouvelles de machines (SympA'14) (2011

    Fast and efficient transport of large ion clouds

    Full text link
    The manipulation of trapped charged particles by electric fields is an accurate, robust and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of the ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 50 000 ions. The design of the trap makes ions very sensitive to any mismatch between the assumed electric potential and the actual local one. Nevertheless, we show that being fast (100 Ό\mus to transfer over more than 20 mm) increases the transport efficiency to values higher than 90 %, even with a large number of ions. For clouds of less than 2000 ions, a 100 % transfer efficiency is observed

    A double ion trap for large Coulomb crystals

    Full text link
    While the linear radiofrequency trap finds various applications in high-precision spectroscopy and quantum information, its higher-order cousin, the linear multipole trap, is almost exclusively employed in physical chemistry. Recently, first experiments have shown interesting features by laser-cooling multipole-trapped ion clouds. Multipole traps show a flatter potential in their centre and therefore a modified density distribution compared to quadrupole traps. Micromotion is an important issue and will certainly influence the dynamics of crystallized ion structures. Our experiment tends to investigate possible crystallization processes in the multipole. In a more general way, we are interested in the study of the dynamics and thermodynamics of large ion clouds in traps of different geometry.Comment: 10th International Workshop on Non-Neutral Plasmas, Greifswald : Germany (2012

    Experimental study of the recombination of a drifting low temperature plasma in the divertor simulator Mistral-B

    Full text link
    In a new divertor simulator, an ultra-cold (Te<1 eV) high density recombining magnetized laboratory plasma is studied using probes, spectroscopic measurements, and ultra-fast imaging of spontaneous emission. The Mistral-B device consists in a linear high density magnetized plasma column. The ionizing electrons originate from a large cathode array located in the fringing field of the solenoid. The ionizing electrons are focused in a 3 cm diameter hole at the entrance of the solenoid. The typical plasma density on the axis is close to 2.10^18 m-3. The collector is segmented into two plates and a transverse electric field is applied through a potential difference between the plates. The Lorentz force induces the ejection of a very-low temperature plasma jet in the limiter shadow. The characteristic convection time and decay lengths have been obtained with an ultra-fast camera. The study of the atomic physics of the recombining plasma allows to understand the measured decay time and to explain the emission spectra.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Potential Contributions of Korean Pleistocene Hominin Fossils to Palaeoanthropology: A View from Ryonggok Cave

    Get PDF
    Traditionally, one of the primary problems hindering a better understanding of the “origin of modern humans” debate is the paucity of information coming out of eastern Asia. Here, we report a set of hominin fossils from Ryonggok, a late Pleistocene cave site located in the paleoanthropologically poorly known region of the Democratic People’s Republic of Korea. Ryonggok is best known for the presence of vertebrate fossils that represent the remains of at least five individuals. We focus our study on the two fairly well-preserved crania — #3 and #7 — and analyze published dental metric data. The primary conclusion we draw from this study is that Ryonggok #3 and #7, while retaining some archaic characteristics, likely represent early modern humans. Because the earliest cultural deposits in Ryonggok appear to date to older than 40,000 years ago, it is likely that these remains may be part of the earliest dispersals of early modern humans into the area. An alternative scenario is that this is evidence of some degree of admixture between indigenous mid-Pleistocene Homo or possibly a late appearing Homo erectus and new modern human migrants to the region. Further study is necessary to determine which of these two scenarios best fits the Korean record. In addition, we present additional linear metric cranial and mandibular data for difficult-to-access North Korean fossils (e.g., Ryonggok, Mandalli, Seungrisan, Geumchun)

    Decrease in serum procalcitonin levels over time during treatment of acute bacterial meningitis

    Get PDF
    INTRODUCTION: The aim of this study was to describe the change in serum procalcitonin levels during treatment for community-acquired acute bacterial meningitis. METHODS: Out of 50 consecutive patients presenting with bacterial meningitis and infection at no other site, and who had received no prior antibiotic treatment, 48 had a serum procalcitonin level above 0.5 ng/ml on admission and were enrolled in the study. RESULTS: The mean age of the patients was 55 years, and mean Glasgow Coma Scale score on admission was 13. The time from symptom onset to admission was less than 24 hours in 40% of the patients, 24–48 hours in 20%, and more than 48 hours in 40%. The median (interquartile) interval between admission and initial antibiotic treatment was 160 min (60–280 min). Bacterial infection was documented in 45 patients. Causative agents included Streptococcus pneumoniae (n = 21), Neisseria meningitidis (n = 9), Listeria monocytogenes (n = 6), other streptococci (n = 5), Haemophilus influenzae (n = 2) and other bacteria (n = 2). The initial antibiotic treatment was effective in all patients. A lumbar puncture performed 48–72 hours after admission in 34 patients showed sterilization of cerebrospinal fluid. Median (interquartile) serum procalcitonin levels on admission and at day 2 were 4.5 (2.8–10.8) mg/ml and 2 (0.9–5.0) mg/ml, respectively (P < 0.0001). The corresponding values for C-reactive protein were 120 (21–241) mg/ml and 156 (121–240) mg/ml, respectively. Five patients (10%) died from noninfectious causes during their hospitalization. CONCLUSIONS: Serum procalcitonin levels decrease rapidly with appropriate antibiotic treatment, diminishing the value of lumbar puncture performed 48–72 hours after admission to assess treatment efficacy

    Noise characterization of an Optical Frequency Comb using Offline Cross-Correlation

    Full text link
    Using an offline cross-correlation technique, we have analyzed the noise behavior of a new type of optical frequency comb (OFC), which is carrier envelope offset (CEO) free by configuration, due to difference frequency generation. In order to evaluate the instrument's ultimate noise floor, the phase and amplitude noise of a stabilized OFC are measured simultaneously using two analog-to-digital converters. Carrier recovery and phase detection are done by post-processing, eliminating the need for external phase-locked loops and complex calibration techniques. In order to adapt the measurement noise floor and the number of averages used in cross correlation, an adaptive frequency resolution for noise measurement is applied. Phase noise results are in excellent agreement with measurements of the fluctuations of the repetition frequency of the OFC obtained from optical signal

    A modern Fizeau experiment for education and outreach purposes

    Full text link
    On the occasion of the laser's 50th anniversary, we performed a modern Fizeau experiment, measuring the speed of light with a laser beam passing over the city centre of Marseille. For a round trip distance of almost five kilometers, the measurement has reached an uncertainty of about 10−4^{-4}, mainly due to atmospheric fluctuations. We present the experimental and pedagogical challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201
    • 

    corecore